




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省凌源市第三中学高一上数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.函数f(x)=logA.(-∞,1) B.(2,+∞)C.(-∞,32) D.(33.函数的值域是A. B.C. D.4.若直线与互相平行,则()A.4 B.C. D.5.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则6.函数,则的最大值为()A. B.C.1 D.7.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为()A. B.C. D.8.设集合,则()A. B.C.{2} D.{-2,2}9.在直角坐标系中,已知,那么角的终边与单位圆坐标为()A. B.C. D.10.已知定义在上的函数满足:,且,,则方程在区间上的所有实根之和为A.-5 B.-6C.-7 D.-8二、填空题:本大题共6小题,每小题5分,共30分。11.函数最小值为______12.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.13.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.14.奇函数的定义域为,若在上单调递减,且,则实数的取值范围是________________.15.命题“”的否定是______.16.已知角α∈(-,0),cosα=,则tanα=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)若函数在上是减函数,求实数的取值范围;(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.18.已知实数,且满足不等式.(1)解不等式;(2)若函数在区间上有最小值,求实数的值.19.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.20.定义在(-1,1)上的奇函数为减函数,且,求实数a的取值范围.21.已知函数(1)求函数的最值及相应的的值;(2)若函数在上单调递增,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理2、A【解析】根据复合函数的单调性求解即可.【详解】因为y=log13x为减函数,且定义域为0,+∞.所以x故求y=x2-3x+2的单调递减区间即可.又对称轴为x=32,y=x2-3x+2在故选:A【点睛】本题主要考查了复合函数的单调区间,需要注意对数函数的定义域,属于基础题型.3、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.4、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.5、D【解析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【点睛】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.6、C【解析】,然后利用二次函数知识可得答案.【详解】,令,则,当时,,故选:C7、C【解析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项【详解】解:函数在上图象关于轴对称;是偶函数;又时,;在,上为周期为2的周期函数;又,时,;,;故选:【点睛】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题8、C【解析】解一元二次不等式,求出集合B,解得集合A,根据集合的交集运算求得答案.【详解】由题意解得:,故,或,所以,故选:C9、A【解析】利用任意角的三角函数的定义求解即可【详解】因为,所以角的终边与单位圆坐标为,故选:A10、C【解析】由题意知,函数的周期为2,则函数在区间上的图像如下图所示:由图形可知函数在区间上的交点为,易知点的横坐标为-3,若设的横坐标为,则点的横坐标为,所以方程在区间上的所有实数根之和为.考点:分段函数及基本函数的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:12、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.13、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:14、【解析】因为奇函数的定义域为,若在上单调递减,所以在定义域上递减,且,所以解得,故填.点睛:利用奇函数及其增减性解不等式时,一方面要确定函数的增减性,注意奇函数在对称区间上单调性一致,同时还要注意函数的定义域对问题的限制,以免遗漏造成错误.15、【解析】根据全称命题的否定是特称命题,写出结论.【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”.【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题.16、【解析】利用同角三角函数的平方关系和商数关系,即得解【详解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)讨论和时实数的取值范围,再结合的范围与函数的对称轴讨论使得在上是减函数的范围即可;(2)假设存在整数,使得的解集恰好是.则,由,解出整数,再代入不等式检验即可小问1详解】解:令,则.当,即时,恒成立,所以.因为在上是减函数,所以,解得,所以.由,解得或.当时,的图象对称轴,且方程的两根均为正,此时在为减函数,所以符合条件.当时,的图象对称轴,且方程的根为一正一负,要使在单调递减,则,解得.综上可知,实数的取值范围为【小问2详解】解:假设存在整数,使的解集恰好是,则①若函数在上单调递增,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均不满足要求;②若函数在上单调递减,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均不满足要求;③若函数在上不单调,则,且,即作差得到,代回得到:,即,由于均为整数,故,,或,,,经检验均满足要求;综上,符合要求的整数是或【点睛】关键点点睛:本题第一问解题的关键在于先根据判别式求出的取值范围,再结合范围和二次函数的性质讨论求解;第二问解题的关键在于分类讨论,将问题转化为函数在上单调递增、单调递减、不单调三种情况求解即可.18、(1)(2)【解析】分析:(1)由题意结合指数函数的单调性可得,结合函数的单调性和函数的定义域可得不等式的解集为.(2),令,结合反比例函数性质和对数函数的性质可得.详解:(1)由题意得:,∴,∴,解得.(2),令,当时,,,所以,所以.∵,∴的对数函数在定义域内递减,∴,∴.点睛:本题主要考查指数函数的性质,对数函数的性质,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.19、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)利用三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)利用线面垂直的性质,结合线面垂直的判定定理进行证明即可.【详解】(1)因为,分别是,的中点,所以,又因为平面,平面,所以平面;(2)因为底面,底面,所以,又因为,,平面,所以平面,而平面,所以.20、【解析】结合奇函数性质以及单调性,去掉外层函数,变成一元二次不等式进行求解.【详解】由题即根据奇函数定义可知原不等式为又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度股权转让及经营权转让一体化协议
- 二零二五年度居民住房租赁合同租赁房屋租赁期限调整协议
- 二零二五年度保密信息处理保密合同
- 绿茶茶园承包经营合同(2025年度)含茶树病虫害防治服务
- 二零二五年度农村宅基地买卖合同协议书(农村产权交易平台)
- 二零二五年度个人私下股权转让及投资风险分担协议
- 代理销售合同市场拓展策略约定事项说明
- 三字经儒家经典读后感
- 历史人物事件记忆题
- 企校合作办学合同
- (高清版)JTGT 3365-02-2020 公路涵洞设计规范
- DZ∕T 0223-2011 矿山地质环境保护与恢复治理方案编制规范(正式版)
- 2024年湖南有色金属职业技术学院单招职业适应性测试题库学生专用
- 医院营养食堂餐饮服务投标方案(技术方案)
- 医院培训课件:《分级护理制度解读》
- 学生宿舍安全应急疏散预案
- 北师大版数学四年级下册第2单元 认识三角形和四边形 大单元整体教学设计
- 2024年长沙环境保护职业技术学院单招职业技能测试题库及答案解析
- 静疗相关血管解剖知识课件
- 中职统编《金属材料与热处理》系列课件 第4章 非合金钢(动画) 云天系列课件
- 【苏科版】九年级物理下册教学计划(及进度表)
评论
0/150
提交评论