版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省澄江县第二中学2025届高一上数学期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.2.函数的单调递减区间为A., B.,C., D.,3.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x24.“”是“”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件5.满足的集合的个数为()A. B.C. D.6.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.87.设a,b均为实数,则“a>b”是“a3A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.10.已知角终边经过点,若,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.12.已知集合,则集合的子集个数为___________.13.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________14.若函数,,则_________;当时,方程的所有实数根的和为__________.15.已知幂函数为奇函数,则___________.16.直线与直线的距离是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.一个半径为2米的水轮如图所示,其圆心O距离水面1米,已知水轮按逆时针匀速转动,每4秒转一圈,如果当水轮上点P从水中浮现时(图中点)开始计算时间.(1)以过点O且与水面垂直的直线为y轴,过点O且平行于水轮所在平面与水面的交线的直线为x轴,建立如图所示的直角坐标系,试将点P距离水面的高度h(单位:米)表示为时间t(单位:秒)的函数;(2)在水轮转动的任意一圈内,有多长时间点P距水面的高度超过2米?18.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,)(1)求,关于x的函数关系式;(2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数)19.已知集合A={x|},B={x||x-a|<2},其中a>0且a≠1(1)当a=2时,求A∪B及A∩B;(2)若集合C={x|logax<0}且C⊆B,求a的取值范围20.已知函数的部分图象如图所示(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,求的值域21.直线过点,且倾斜角为.(1)求直线的方程;(2)求直线与坐标轴所围成的三角形面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.2、D【解析】由题意得选D.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间;由求减区间3、D【解析】根据含有一个量词命题的否定的定义求解.【详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【点睛】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.4、D【解析】求得的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由,可得或,所以“”是“或”成立的充分不必要条件,所以“”是“”必要不充分条件.故选:D.5、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.6、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.7、C【解析】因为a3-b3=(a-b)(a28、C【解析】利用不等式的性质和充要条件的判定条件进行判定即可.【详解】因为,,所以成立;又,,所以成立;所以当时,“”是“”的充分必要条件.故选:C.9、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础10、C【解析】根据三角函数的定义,列出方程,即可求解.【详解】由题意,角终边经过点,可得,又由,根据三角函数的定义,可得且,解得.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果.【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.12、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.13、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.14、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.15、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:16、【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)秒【解析】(1)设,根据题意求得、的值,以及函数的最小正周期,可求得的值,根据的大小可得出的值,由此可得出关于的函数解析式;(2)由得出,令,求得的取值范围,进而可解不等式,可得出的取值范围,进而得解.【详解】解:(1)如图所示,标出点M与点N,设,根据题意可知,,所以,根据函数的物理意义可知:,又因为函数的最小正周期为,所以,所以可得:.(2)根据题意可知,,即,当水轮转动一圈时,,可得:,所以此时,解得:,又因为(秒),即水轮转动任意一圈内,有秒的时间点P距水面的高度超过2米18、(1),(2)13分钟【解析】(1)按照题目所给定的坐标系分别写出和的方程即可;(2)根据零点存在定理判断即可.【小问1详解】可设,∵转动的周期为30分钟,∴,∵枢轮的直径为3.4米,∴,∵点P的初始位置为最高点,∴,∴,∵退水壶内水面位于枢轮中心下方1.19米处,∴水面的初始纵坐标为,∵水位以每分钟0.017米速度下降,∴;【小问2详解】P点进入水中,则,即∴作出和的大致图像,显然在内存在一个交点令,∵,,∴P点进入水中所用时间的最小值为13分钟;综上,,,P点进入水中所用时间的最小值为13分钟.19、(1)A∪B={x|x>0},A∩B={x|2<x<4};(2){a|1<a≤2},【解析】(1)化简集合A,B,利用并集及交集的概念运算即得;(2)分a>1,0<a<1讨论,利用条件列出不等式即得.【小问1详解】∵A={x|2x>4}={x|x>2},B={x||x-a|<2}={x|a-2<x<a+2},∴当a=2时,B={x|0<x<4},所以A∪B={x|x>0},A∩B={x|2<x<4};【小问2详解】当a>1时,C={x|logax<0}={x|0<x<1},因为C⊆B,所以,解得-1≤a≤2,因为a>1,此时1<a≤2,当0<a<1时,C={x|logax<0}={x|x>1},此时不满足C⊆B,综上,a的取值范围为{a|1<a≤2}20、(1),()(2)【解析】(1)先根据图象得到函数的最大值和最小值,由此列方程组求得的值,根据周期求得的值,根据求得的值,由此求得的解析式,进而求出的对称中心;(2)根据三角变换法则求得函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术创意课程设计教程
- 长高课程设计思路
- 高校直播营销课程设计
- 项目质量计划课程设计
- 除氧器课程设计思路例文
- 道路勘察课程设计案例
- 铜转炉吹炼课程设计
- GB/T 45049-2024土方机械纯电动液压挖掘机试验方法
- 2024适用型夫妻双方离婚合同指导文本版
- 2024版蔬菜采购合同集锦
- 高速公路初步设计汇报课件
- 航空油料计量统计员(初级)理论考试复习题库大全-上(单选题汇总)
- 申根签证申请表模板
- 企业会计准则、应用指南及附录2023年8月
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
- 动物生理学-全套课件(上)
- 河北省衡水市各县区乡镇行政村村庄村名居民村民委员会明细
- DB32-T 2665-2014机动车维修费用结算规范-(高清现行)
评论
0/150
提交评论