版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安二中、霍邱一中、金寨一中2025届高一数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-12.已知命题p:,,则()A., B.,C., D.,3.函数的大致图象是A. B.C. D.4.已知函数是定义在上的偶函数,且在上单调递增,若,则不等式解集为A. B.C. D.5.中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵.那么前3个儿子分到的绵的总数是()A.89斤 B.116斤C.189斤 D.246斤6.已知直线:和直线:互相垂直,则实数的值为()A.-1 B.1C.0 D.27.设函数若任意给定的,都存在唯一的非零实数满足,则正实数的取值范围为()A. B.C. D.8.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1C.-1 D.-39.直线和直线的距离是A. B.C. D.10.德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割,如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是两底角为的等腰三角形(另一种是两底角为的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,.根据这些信息,可得sin54°=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求过(2,3)点,且与(x-3)2+y2=1相切的直线方程为_____12.已知定义在上的偶函数在上递减,且,则不等式的解集为__________13.已知是球上的点,,,,则球的表面积等于________________14.已知,均为正数,且,则的最大值为____,的最小值为____.15.已知且,则=______________16.已知向量,,若,则与的夹角为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求两条平行直线3x+4y-6=0与ax+8y-4=0间的距离(2)求两条垂直的直线2x+my-8=0和x-2y+1=0的交点坐标18.已知集合,(1)若,求;(2)在①,②,③,这三个条件中任选一个作为已知条件,求实数的取值范围19.设,且.(1)求a的值及的定义域;(2)求在区间上的值域.20.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围21.设集合,.(1)若,求;(2)若,求实数的取值集合.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.2、A【解析】直接利用全称命题的否定即可得到结论【详解】因为命题p:,,所以:,.故选:A.3、D【解析】关于对称,且时,,故选D4、B【解析】,又函数是定义在上的偶函数,且在上单调递增,所以,解得.考点:偶函数的性质.【思路点睛】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.根据函数奇偶性可得,再根据函数的单调性,可得;然后再解不等式即可求出结果5、D【解析】利用等差数列的前项和的公式即可求解.【详解】用表示8个儿子按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,所以,解之得所以,即前3个儿子分到的绵是246斤故选:D6、B【解析】利用两直线垂直的充要条件即得.【详解】∵直线:和直线:互相垂直,∴,即.故选:B.7、A【解析】结合函数的图象及值域分析,当时,存在唯一的非零实数满足,然后利用一元二次不等式的性质即可得结论.【详解】解:因为,所以由函数的图象可知其值域为,又时,值域为;时,值域为,所以的值域为时有两个解,令,则,若存在唯一的非零实数满足,则当时,,与一一对应,要使也一一对应,则,,任意,即,因为,所以不等式等价于,即,因,所以,所以,又,所以正实数的取值范围为.故选:A.8、D【解析】∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故选D9、A【解析】因为直线即,故两条平行直线和的距离故选A10、C【解析】先求出,再借助倍角公式求出,通过诱导公式求出sin54°.【详解】正五边形的一个内角为,则,,,所以故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】当直线没有斜率时,直线的方程为x=2,满足题意,所以此时直线的方程为x=2.当直线存在斜率时,设直线的方程为所以故直线的方程为或.故填或.12、【解析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理13、【解析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键14、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.15、3【解析】先换元求得函数,然后然后代入即可求解.【详解】且,令,则,即,解得,故答案为:3.16、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3,2)【解析】(1)根据两平行线的距离公式得到两平行线间的距离为;(2)联立直线可求得交点坐标.解析:(1)由,得两条直线的方程分别为3x+4y-6=0,6x+8y-4=0即3x+4y-2=0所以两平行线间的距离为(2)由2-2m=0,得m=1由,得所以交点坐标为(3,2)18、(1)(2)答案见解析【解析】(1)分别求出集合和集合,求并集即可;(2)选①,根据集合和集合的位置在数轴上确定端点的关系,列出不等式组即可求解,选②,先求出,再根据条件在数轴确定端点位置关系列出不等式组即可求解,选③,得到,根据数轴端点位置关系列出不等式组即可求解.【小问1详解】因为,所以,又因为,所以【小问2详解】若选①:则满足或,所以的取值范围为或若选②:所以或,则满足,所以的取值范围为若选③:由题意得,则满足所以的取值范围为19、(1),;(2)【解析】(1)由代入计算可得的值,根据对数的真数大于零,求出函数的定义域;(2)由(1)可知,设,则,由的取值范围求出的范围,即可求出的值域;【详解】解:(1)∵,∴,∴,则由,解得,即,所以的定义域为(2),设,则,,当时,,而,,∴,,所以在区间上的值域为【点睛】本题考查待定系数法求函数解析式,对数型复合函数的值域,属于中档题.20、(1)(2)【解析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问2详解】解:由已知可得,方程在上有2个不等的实数解,即方程在上有2个不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力系统运行监测管理办法
- 高一化学二第一节化学能与热能练习
- 2024届安徽省泗县刘圩某中学高考三轮模拟试卷化学试题卷含解析
- 2024高中地理第3章区域自然资源综合开发利用第2节第2课时流域的综合开发学案新人教版必修3
- 2024高考化学一轮复习第一部分考点3物质的分类分散系强化训练含解析
- 2024高考化学二轮复习专题九化学实验学案
- 2024高考地理一轮复习专练100地理区域图的判读含解析新人教版
- 小学2024-2025学年度第二学期教学工作计划
- 冬季施工暖棚搭设方案
- 人教版九年级化学上册自制第六单元课题4实验活动2-二氧化碳实验室制取与性质(34张)
- 2024年建筑施工安全工作计划(3篇)
- 2024届九省联考英语试题(含答案解析、MP3及录音稿)
- 仓库消防知识安全培训
- 从事专业与所学专业不一致专业技术人员申报职称岗位任职合格证明附件6
- 我国房屋建筑模板技术的研究综述
- 人教版小学三年级上册数学竖式笔算练习题
- 航天科工集团在线测评题
- 山东省潍坊新2025届高三语文第一学期期末经典试题含解析
- (新版)吉林一级健康管理师高频核心题库300题(含答案)
- JT-T-1344-2020纯电动汽车维护、检测、诊断技术规范
- 2024年湖北省武汉市中考语文试卷真题(含答案)
评论
0/150
提交评论