版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市广丰区2025届高一数学第一学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为偶函数,在单调递减,且在该区间上没有零点,则的取值范围为()A. B.C. D.2.已知,则()A. B.C.2 D.3.已知函数,则该函数的单调递减区间是()A. B.C. D.4.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.5.某服装厂2020年生产了15万件服装,若该服装厂的产量每年以20%的增长率递增,则该服装厂的产量首次超过40万件的年份是(参考数据:取,)()A.2025届 B.2025届C.2025年 D.2026年6.已知集合,,则()A B.C. D.{1,2,3}7.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.8.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20139.已知f(x)、g(x)均为[﹣1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)10.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.Sigmoid函数是一个在生物学、计算机神经网络等领域常用的函数模型,其解析式为S(x)=11+e-x,则此函数在R上________(填“单调递增”“单调递减”或12.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.13.计算值为______14.锐角中,分别为内角的对边,已知,,,则的面积为__________15.定义在上的函数满足则________.16.将函数图象上的所有点向右平行移动个单位长度,则所得图象的函数解析式为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知角的终边与以原点为圆心的单位圆交于点.(1)求与的值;(2)计算的值.18.已知函数(且)(1)当时,解不等式;(2)是否存在实数a,使得当时,函数的值域为?若存在,求实数a的值;若不存在,请说明理由19.如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=CD=1,BC=2,PD=(Ⅰ)求证:PD⊥平面PBC;(Ⅱ)求直线AB与平面PBC所成角的大小;(Ⅲ)求二面角P-AB-C的正切值20.如图,在中,,,点在的延长线上,点是边上的一点,且存在非零实数,使.(Ⅰ)求与的数量积;(Ⅱ)求与的数量积.21.如图,在四棱锥中,,,,且,分别为的中点.(1)求证:平面;(2)求证:平面;(3)若二面角的大小为,求四棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据函数为偶函数,得到,再根据函数在单调递减,且在该区间上没有零点,由求解.【详解】因为函数为偶函数,所以,由,得,因为函数在单调递减,且在该区间上没有零点,所以,解得,所以的取值范围为,故选:D2、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B3、C【解析】先用诱导公式化简,再求单调递减区间.【详解】要求单调递减区间,只需,.故选:C.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式4、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.5、D【解析】设该服装厂的产量首次超过40万件的年份为n,进而得,再结合对数运算解不等式即可得答案.【详解】解:设该服装厂的产量首次超过40万件的年份为n,则,得,因为,所以故选:D6、A【解析】利用并集概念进行计算.【详解】.故选:A7、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C8、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为9、C【解析】设h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出结论.【详解】设h(x)=f(x)﹣g(x),则h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零点在区间(0,1),故选:C.【点睛】思路点睛:该题考查的是有关零点存在性定理的应用问题,解题思路如下:(1)先构造函数h(x)=f(x)﹣g(x);(2)利用题中所给的有关函数值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零点存在性定理,得到结果.10、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、①.单调递增②.0,1【解析】由题可得S(x)=1-1e【详解】∵S(x)=11+e∀x1,x2∵x1<x∴S(x1)-S(所以函数S(x)=11+e又ex所以ex+1>1,0<1故答案为:单调递增;0,1.12、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.13、1;【解析】14、【解析】由已知条件可得,,再由正弦定理可得,从而根据三角形内角和定理即可求得,从而利用公式即可得到答案.【详解】,由得,又为锐角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案为.【点睛】三角形面积公式的应用原则:(1)对于面积公式S=absinC=acsinB=bcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化15、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题16、【解析】由题意利用函数的图象变换规律,即可得到结果【详解】将函数的图象向右平移个单位,所得图象对应的函数解析式,即.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由任意角的三角函数的定义求出,,,再利用两角和的余弦公式计算可得;(2)利用诱导公式将式子化简,再将弦化切,最后代入计算可得;【详解】解:(1)由三角函数定义可知:.,;(2)原式因为,原式.18、(1);(2)不存在.【解析】(1)根据对数函数的性质可得,求解集即可.(2)由题设可得,进而将问题转化为在上有两个不同的零点,利用二次函数的性质即可判断存在性.【小问1详解】由题设,,∴,可得,∴的解集为.【小问2详解】由题设,,故,∴,而上递增,递减,∴在上递减,故,∴,即是的两个不同的实根,∴在上有两个不同的零点,而开口向上且,显然在上不可能存在两个零点,综上,不存在实数a使题设条件成立.【点睛】关键点点睛:第二问,根据对数函数的性质易得,并将问题转化为二次函数在上有两个不同实根零点判断参数的存在性.19、(Ⅰ)见解析;(Ⅱ)30°;(Ⅲ).【解析】(Ⅰ)证明,则,又PD⊥PB即可证明平面(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,DF与平面所成的角等于AB与平面所成的角,为直线DF和平面所成的角,在中,求解即可(Ⅲ)说明是二面角的平面角,在直角梯形ABCD内可求得,而,在中,求解即可【详解】(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD又因为BC∥AD,所以PD⊥BC,又PD⊥PB,PB与BC相交于点B,所以,PD⊥平面PBC.(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=CF=1又AD⊥DC,故BC⊥DC,ABCD为直角梯形,所以,DF=.
在Rt△DPF中,PD=,DF=,sin∠DFP==所以,直线AB与平面PBC所成角为30°.(Ⅲ)设E是CD的中点,则PE⊥CD,又AD⊥平面PDC,所以PE⊥平面ABCD.
在平面ABCD内作EG⊥AB交AB的延长线于G,连EG,则∠PGE是二面角P-AB-C的平面角.在直角梯形ABCD内可求得EG=,而PE=,所以,在Rt△PEG中,tan∠PGE==所以,二面角P-AB-C的正切值为【点睛】本题考查二面角的平面角以及直线与平面所成角的求法,直线与平面垂直的判断定理的应用,要正确地找出线面角及二面角的平面角,然后解三角形即可.20、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,从而得到三角形为等腰三角形,可得,由数量积的定义可得.(Ⅱ)根据所给的向量式可得点在的角平分线上,故可得,所以,因为,所以得到.设设,则得到,,根据数量积的定义及运算率可得所求试题解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以点在的角平分线上,又因为点是边上的一点,所以由角平分线性质定理得,所以.因为,所以.设,则,由,得,所以,又,所以点睛:解题时注意在三角形中常见的向量与几何特征的关系:(1)在中,若或,则点是的外心;(2)在中,若,则点是的重心;(3)在中,若,则直线一定过的重心;(4)在中,若,则点是的垂心;(5)在中,若,则直线通过的内心.21、(1)见解析(2)见解析(3)【解析】(1)取的中点,根据题意易证四边形为平行四边形,所以,从而易证结论;(2)由,可得线面垂直;(3)由二面角的大小为,可得,求出底
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业物联网技术应用指南
- 皮制公文包项目评价分析报告
- 健康保健项目营销推广计划书
- 企业级内容管理系统设计与部署
- 石锅相关项目建议书
- 企业国际化战略风险应对预案
- 人工智能辅助人力资源管理的研究与实施
- 人力资源绩效评估操作指南
- 专题4.4 光的折射【四大题型】【人教版2024】(原卷版)-2024-2025学年八年级上册物理举一反三系列(人教版2024)
- DB11T 1322.10-2017 安全生产等级评定技术规范 第10部分:木材加工企业
- 医学专题—儿科患儿早期预警评分的应用课件
- 纸箱报价公式
- 第三节流水地貌2课件
- 全国常规免疫接种率监测方案
- 地源热泵机房调试方案 (1)
- 附表 电力服务(涉电维护、检测等)收费项目及标准
- 焊接工艺设计方案
- 二手车旧机动车评估图文实例及交易注意事项珍贵教材PPT课件
- 管02酸洗、钝化记录
- 《内科护理学》病例分析(完整版)
- 低压有源滤波柜订货技术文件
评论
0/150
提交评论