云南省昭通市永善县第一中学2025届高二上数学期末教学质量检测模拟试题含解析_第1页
云南省昭通市永善县第一中学2025届高二上数学期末教学质量检测模拟试题含解析_第2页
云南省昭通市永善县第一中学2025届高二上数学期末教学质量检测模拟试题含解析_第3页
云南省昭通市永善县第一中学2025届高二上数学期末教学质量检测模拟试题含解析_第4页
云南省昭通市永善县第一中学2025届高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昭通市永善县第一中学2025届高二上数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.62.某四面体的三视图如图所示,该四面体的表面积为()A. B.C. D.3.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-84.已知递增等比数列的前n项和为,,且,则与的关系是()A. B.C. D.5.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.6.抛物线的焦点到直线的距离为,则()A.1 B.2C. D.47.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次从高变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,问这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.20C.18 D.168.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切9.已知数列的前项和为,当时,()A.11 B.20C.33 D.3510.已知抛物线的焦点为F,点P为该抛物线上的动点,若,则当最大时,()A. B.1C. D.211.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对12.若构成空间向量的一组基底,则下列向量不共面的是()A.,, B.,,C.,, D.,,二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.14.设函数满足,则______.15.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________16.若“x2-x-6>0”是“x>a”的必要不充分条件,则a的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,底面是直角梯形,,,,分别是棱,的中点(1)证明:平面;(2)若,且四棱锥的体积是6,求三棱锥的体积18.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.19.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程20.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.22.(10分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D2、A【解析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.3、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A4、D【解析】设等比数列的公比为,由已知列式求得,再由等比数列的通项公式与前项和求解.【详解】设等比数列的公比为,由,得,所以,又,所以,所以,,所以即故选:D5、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.6、B【解析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.7、D【解析】根据题意,建立等差数列模型,结合等差数列公式求解即可.【详解】解:根据题意,设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:D.8、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.9、B【解析】由数列的性质可得,计算可得到答案.【详解】由题意,.故答案为B.【点睛】本题考查了数列的前n项和的性质,属于基础题.10、B【解析】根据抛物线的定义,结合换元法、配方法进行求解即可.【详解】因为点P为该抛物线上的动点,所以点P的坐标设为,抛物线的焦点为F,所以,抛物线的准线方程为:,因此,令,,当时,即当时,有最大值,最大值为1,此时.故选:B11、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D12、C【解析】根据空间向量共面的条件即可解答.【详解】对于A,由,所以,,共面;对于B,由,所以,,共面;对于D,,所以,,共面,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14、5【解析】考点:函数导数与求值15、【解析】设出点的坐标,与抛物线方程联立,结合题意和韦达定理,求得抛物线的方程为,直线AB的方程为,进而求得的值.【详解】设,在抛物线,过切点A与抛物线相切的直线的斜率为,则以为切点的切线方程为,联立方程组,整理得,则,整理得,所以,解得,所以以为切点的切线方程为,即,同理,设,在抛物线,过切点B与抛物线相切的直线,又因为在切线和,所以,所以直线AB的方程为,又直线AB过抛物线的焦点,所以令,可得,即,所以抛物线的方程为,直线AB的方程为,联立方程组,整理得或,所以,所以.故答案为:.16、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分条件,求出a的最小值.【详解】由x2-x-6>0,解得x<-2或x>3.因为“x2-x-6>0”是“x>a”的必要不充分条件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案为:3.【点睛】本题考查充分条件和必要条件的应用,考查一元二次不等式的解法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)2.【解析】(1)取的中点,连接,.运用面面平行的判定和性质可得证;(2)过点作,垂足为,连接,,设点到平面的距离为,根据棱锥的体积求得,再利用三棱锥的体积与三棱锥的体积相等,三棱锥的体积与三棱锥的体积相等,可求得答案.【小问1详解】证明:如图,取的中点,连接,因为,分别是棱,的中点,所以,又平面,平面,所以平面因为,且,分别是棱,的中点,所以,又平面,平面,所以平面因为平面,且,所以平面平面因为平面,所以平面【小问2详解】解:过点作,垂足为,连接,,则四边形是正方形,从而因为,所以,则,从而直角梯形的面积设点到平面的距离为,则四棱锥的体积,解得因为三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积因为平面,所以三棱锥的体积与三棱锥的体积相等,所以三棱锥的体积为218、(1)(2)【解析】(1)由三点共线可知斜率相等,即可得出答案;(2)由题可得,利用错位相减法即可求出答案.【小问1详解】三点共线,【小问2详解】①②①—②得19、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或20、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关键.一般地,当等式中含有a,b,c的关系式,且全为二次时,可利用余弦定理进行化简;当含有内角的正弦值及边的关系,且为一次式时,可考虑采用正弦定理进行边角互化.21、(1)或(2)存在,【解析】(1)确定点为抛物线的焦点,则根据抛物线的焦半径公式,结合抛物线方程,求得答案;(2)假设存在正数m,使得以MN为直径的圆经过坐标原点O,可推得,由此可设直线方程,联立抛物线方程,利用根与系数的关系,代入到中,可得结论.【小问1详解】依题意得为的焦点,故,解得,故,则∴点的坐标或;【小问2详解】假设存在正数,使得以为直径的圆经过坐标原点,∴,设直线:,,,由,得,则,,∵,,∴,解得或(舍去)所以存在正数,使得以为直径的圆经过坐标原点.22、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论