版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南腾冲市第八中学2025届高一上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正方体中,分别是的中点,则直线与平面所成角的余弦值为A. B.C. D.2.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.3.某同学用“五点法”画函数fxωx+φ0ππ3π2xπ5πA05-50根据表格中的数据,函数fxA.fx=5C.fx=54.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息()元.(参考数据:)A.176 B.100C.77 D.885.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)6.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.7.已知函数,则的值为()A.1 B.2C.4 D.58.已知全集,集合,,则()A.{2,3,4} B.{1,2,4,5}C.{2,5} D.{2}9.下列函数中与函数是同一个函数的是()A. B.C. D.10.直线经过第一、二、四象限,则a、b、c应满足()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若向量与共线且方向相同,则___________12.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.13.的解集为_____________________________________14.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.15.函数,的图象恒过定点P,则P点的坐标是_____.16.不等式的解集是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设条件,条件(1)在条件q中,当时,求实数x的取值范围.(2)若p是q的充分不必要条件,则实数m的取值范围.18.已知函数(1)求函数的对称中心;(2)当时,求函数的值域19.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4尾/立方米时,的值为2千克/年:当时,是的一次函数,当达到20尾/立方米时,因缺氧等原因,的值为0千克/年.(1)当时,求关于的函数解析式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.20.在①;②关于x的不等式的解集是这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分(1)已知______,求关于的不等式的解集;(2)在(1)的条件下,若非空集合,,求实数的取值范围21.通常表明地震能量大小的尺度是里氏震级,其计算公式为:,其中,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差)(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是30,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算8级地震的最大振幅是5级地震的最大振幅的多少倍?(以下数据供参考:,)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.2、D【解析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.3、A【解析】根据函数最值,可求得A值,根据周期公式,可求得ω值,代入特殊点,可求得φ值,即可得答案.【详解】由题意得最大值为5,最小值为-5,所以A=5,T2=5π6-又2×π3+φ=所以fx的解析式可以是故选:A4、B【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题5、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.6、B【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.7、D【解析】根据函数的定义域求函数值即可.【详解】因为函数,则,又,所以故选:D.【点睛】本题考查分段函数根据定义域求值域的问题,属于基础题.8、B【解析】根据补集的定义求出,再利用并集的定义求解即可.【详解】因为全集,,所以,又因为集合,所以,故选:B.9、B【解析】根据同一函数的概念,结合函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A中,函数的定义为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数;对于B中,函数与函数的定义域和对应法则都相同,所以是同一函数;对于C中,函数与函数的对应法则不同,不是同一函数;对于D中,函数的定义域为,因为函数的定义域为,所以两函数的定义域不同,不是同一函数.故选:B.10、A【解析】根据直线经过第一、二、四象限判断出即可得到结论.【详解】由题意可知直线的斜率存在,方程可变形为,∵直线经过第一、二、四象限,∴,∴且故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】向量共线可得坐标分量之间的关系式,从而求得n.【详解】因为向量与共线,所以;由两者方向相同可得.【点睛】本题主要考查共线向量的坐标表示,熟记共线向量的充要条件是求解关键.12、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.13、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.14、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.15、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.16、【解析】由题意,,根据一元二次不等式的解法即可求出结果.【详解】由题意,或,故不等式的解集为.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将代入,整理得,求解一元二次不等式即可;(2)由题可知条件为,是的子集,列不等式组即可求解.【小问1详解】解:当时,条件,即,解得,故的取值范围为:.【小问2详解】解:由题知,条件,条件,即,∵是的充分不必要条件,故是的子集,∴,解得,故实数m的取值范围为.18、(1)(2)【解析】(1)化简函数,结合三角函数的图象与性质,即可求解;(2)由,可得,结合三角函数的图象与性质,即可求解;【小问1详解】解:由题意,函数,令,解得,所以函数的对称中心为.【小问2详解】解:因为,可得,当时,即时,可得;当时,即时,可得,所以函数的值域为19、(1);(2)当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大为千克/立方米.【解析】(1)由题意:当时,.当时,设,在,是减函数,由已知得,能求出函数(2)依题意并由(1),,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果【详解】解:(1)由题意:当时,当时,设,显然在,减函数,由已知得,解得,,故函数(2)依题意并由(1)得,当时,为增函数,且当时,,所以,当时,的最大值为12.5当养殖密度为10尾立方米时,鱼年生长量可以达到最大,最大值约为12.5千克立方米【点睛】(1)很多实际问题中,变量间关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值20、(1)条件选择见解析,或(2)【解析】(1)若选①,分和,求得a,再利用一元二次不等式的解法求解;若选②,根据不等式的解集为,求得a,b,再利用一元二次不等式的解法求解;(2)由,得到求解;【小问1详解】解:若选①,若,解得,不符合条件若,解得,则符合条件将代入不等式并整理得,解得或,故或若选②,因为不等式的解集为,所以,解得将代入不等式整理得,解得或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 秋季家校互动与沟通方案计划
- 二零二四年度物业管理责任划分合同
- 二零二四年度网络安全技术培训与服务合同
- 2024年度二手汽车贷款还款保证合同
- 拍摄模特签约合同完整版
- 沉浸式游戏解析研究报告
- 车辆顶账合同范本
- 2024年肖像拍摄合同范本
- 二零二四年文化旅游产业发展项目投资合同
- 2024版股权转让协议及股权变更合同
- 电车充电桩安全协议书范本
- 汽车服务企业管理教案
- 手术室职业安全与防护课件
- 中风中医护理方案试题及答案
- 2024年04月新疆喀什地区人才引进644人笔试笔试历年典型考题及考点研判与答案解析
- 16J916-1住宅排气道一
- 教师师德师风知识检测试卷及答案
- 维生素C的含量测定
- 医院工作总结安宁疗护服务工作总结提升患者生命质量
- 《公共机构能源托管规程》
- 干眼症病人护理课件
评论
0/150
提交评论