版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省凤庆二中2025届数学高一上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且2.如图,在正三棱锥中,,点为棱的中点,则异面直线与所成角的大小为()A.30° B.45°C.60° D.90°3.已知,,是三个不同的平面,是一条直线,则下列说法正确的是()A.若,,,则B.若,,则C.若,,则D.若,,,则4.已知,,,则下列判断正确是()A. B.C. D.5.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.6.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.697.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或28.若,则下列不等式中,正确的是()A. B.C. D.9.(南昌高三文科数学(模拟一)第9题)我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有钱.A. B.C. D.10.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.圆在点P(1,)处的切线方程为_____12.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________13.若圆心角为的扇形的弧长为,则该扇形面积为__________.14.不等式对于任意的x,y∈R恒成立,则实数k的取值范围为________15.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________16.已知,,且,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.18.设函数.(1)求关于的不等式的解集;(2)若是偶函数,且,,,求的取值范围.19.已知函数满足(1)求的解析式,并求在上的值域;(2)若对,且,都有成立,求实数k的取值范围20.设,函数在上单调递减.(1)求;(2)若函数在区间上有且只有一个零点,求实数k的取值范围.21.求值:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..2、C【解析】取BC的中点E,∠DFE即为所求,结合条件即求.【详解】如图取BC的中点E,连接EF,DE,则EF∥AB,∠DFE即为所求,设,在正三棱锥中,,故,∴,∴,即异面直线与所成角的大小为.故选:C.3、A【解析】利用面面垂直的性质,线面的位置关系,面面的位置关系,结合几何模型即可判断.【详解】对于A,在平面内取一点P,在平面内过P分别作平面与,与的交线的垂线a,b,则由面面垂直的性质定理可得,又,∴,由线面垂直的判定定理可得,故A正确;对于B,若,,则与位置关系不确定,可能与平行、相交或在内,故B错误;对于C,若,,则与相交或平行,故C错误;对于D,如图平面,且,,,显然与不垂直,故D错误.故选:A.4、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.5、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B6、B【解析】由已知可得方程,解出即可【详解】解:由已知可得,解得,两边取对数有,解得.故选:B7、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C8、C【解析】利用不等式的基本性质判断.【详解】由,得,即,故A错误;则,则,即,故B错误;则,,所以,故C正确;则,所以,故D错误;故选:C9、B【解析】详解】设甲乙丙各有钱,则有解得,选B.10、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.二、填空题:本大题共6小题,每小题5分,共30分。11、x-y+2=0【解析】圆,点在圆上,∴其切线方程为,整理得:12、3【解析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.13、【解析】根据扇形面积公式计算即可.【详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:14、【解析】根据给定条件将命题转化为关于x的一元二次不等式恒成立,再利用关于y的不等式恒成立即可计算作答.【详解】因为对于任意的x,y∈R恒成立,于是得关于x的一元二次不等式对于任意的x,y∈R恒成立,因此,对于任意的y∈R恒成立,故有,解得,所以实数k的取值范围为.故答案为:15、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用16、6【解析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)周期为,最大值为2,最小值为-1(2)【解析】(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式18、(1)当时,;当时,;当时,(2)【解析】(1)分类讨论,解含参一元二次不等式;(2)先根据是偶函数,得到,再,,转化为在上的最小值小于在上的最小值,进行求解.【小问1详解】,令,解得或当时,,的解集是;当时,,的解集是;当时,,的解集是.【小问2详解】因为是偶函数,所以,解得:.设函数,因为在上单调递增,所以.设函数.当时,在上单调递增,则,故,即,结合得:;当时,在上单调递减,则,故,即,结合得:综上,的取值范围为19、(1),(2)【解析】(1)由条件可得,然后可解出,然后利用对勾函数的知识可得答案;(2)设,条件中的不等式可变形为,即可得在区间(2,4)递增,然后分、、三种情况讨论求解即可.【小问1详解】因为①,所以②,联立①②解得.当时为增函数,时为减函数,因为所以【小问2详解】对,,,都有,不妨设,则由恒成立,也即可得函数在区间(2,4)递增;当,即时,满足题意;当,即时,为两个在上单调递增函数的和,则可得在单调递增,从而满足在(2,4)递增,符合题意;当,即时,,其在递减,在递增,若使在(2,4)递增,则只需;综上可得:20、(1);(2).【解析】(1)分析得到关于的不等式,解不等式即得解;(2)等价于函数与函数的图象在区间上有且只有一个交点,再对分类讨论得解.【小问1详解】解:因为,在上单调递减,所以,解得.又,且,解得.综上,.【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景区临时工合同模板
- 农业房屋抵押合同模板
- 北京签供暖合同模板
- 采购巴西糖 合同模板
- 厂地出租合同模板
- 绿化管理合同模板
- 解除一期租房合同模板
- 美容员员工合同模板
- 餐饮经营购买合同模板
- 香港抵押贷款合同模板
- 国家中小学智慧教育平台培训专题讲座
- 六年级上册 劳动 菊花扦插
- 护理安全业务学习
- 尿液分析和肾功能检查
- 教 师 会 议 记 录 表
- 处置群体性上访事件的应急预案
- 2016-2022年全氟聚醚油产业市场研究及发展前景预测分析报告
- 医院护理培训课件:《用药错误案例分析之RCA根本原因分析法》
- 江西省吉安市2023-2024学年七年级上学期月考数学试题
- 项目雨季施工监理实施细则
- 安全生产知识与管理能力考核合格证申请表(安全生产管理人员)
评论
0/150
提交评论