四川省绵阳市2025届高二数学第一学期期末检测模拟试题含解析_第1页
四川省绵阳市2025届高二数学第一学期期末检测模拟试题含解析_第2页
四川省绵阳市2025届高二数学第一学期期末检测模拟试题含解析_第3页
四川省绵阳市2025届高二数学第一学期期末检测模拟试题含解析_第4页
四川省绵阳市2025届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵阳市2025届高二数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列中,,则()A.2 B.C. D.2.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.183.在平行六面体中,点P在上,若,则()A. B.C. D.4.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.5.用数学归纳法证明“”的过程中,从到时,不等式的左边增加了()A. B.C. D.6.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.7.在四面体中,设,若F为BC的中点,P为EF的中点,则=()A. B.C. D.8.若函数在区间单调递增,则的取值范围是()A. B.C. D.9.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆的离心率为()A. B.C. D.10.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.11.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.12.已知为坐标原点,向量,点,.若点在直线上,且,则点的坐标为().A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______14.已知、是空间内两个单位向量,且,如果空间向量满足,且,,则对于任意的实数、,的最小值为______15.若抛物线上一点到其准线的距离为4,则抛物线的标准方程为___________.16.已知春季里,甲地每天下雨的概率为,乙地每天下雨的概率大于0,且甲、乙两地下雨相互独立,则春季的一天里,已知乙地下雨的条件下,甲地也下雨的概率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:和圆外一点,过点作圆的切线,切线长为.(1)求圆的标准方程;(2)若圆:,求证:圆和圆相交,并求出两圆的公共弦长.18.(12分)如图,四棱锥中,侧面是边长为4的正三角形,且与底面垂直,底面是菱形,且,为的中点(1)求证:;(2)求点到平面的距离19.(12分)已知,,分别是锐角内角,,的对边,,.(1)求的值;(2)若的面积为,求的值.20.(12分)已知函数(1)当时,求函数的单调区间;(2)设,,求证:;(3)当时,恒成立,求的取值范围21.(12分)已知O为坐标原点,点P在抛物线C:上,点F为抛物线C的焦点,记P到直线的距离为d,且.(1)求抛物线C的标准方程;(2)若过点的直线l与抛物线C相切,求直线l的方程.22.(10分)已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.2、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B3、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C4、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.5、B【解析】依题意,由递推到时,不等式左边为,与时不等式的左边作差比较即可得到答案【详解】用数学归纳法证明等式的过程中,假设时不等式成立,左边,则当时,左边,∴从到时,不等式的左边增加了故选:B6、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.7、A【解析】作出图示,根据空间向量的加法运算法则,即可得答案.【详解】如图示:连接OF,因为P为EF中点,,F为BC的中点,则,故选:A8、A【解析】函数在区间上单调递增,转化为导函数在该区间上大于等于0恒成立,进而求出结果.【详解】由题意得:在区间上恒成立,而,所以.故选:A9、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.10、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.11、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.12、A【解析】由在直线上,设,再利用向量垂直,可得,进而可求E点坐标.【详解】因为在直线上,故存在实数使得,.若,则,所以,解得,因此点的坐标为.故选:A.【定睛】本题考查了空间向量的共线和数量积运算,考查了运算求解能力和逻辑推理能力,属于一般题目.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:14、【解析】根据已知可设,,,根据已知条件求出、、的值,将向量用坐标加以表示,利用空间向量的模长公式可求得的最小值.【详解】因为、是空间内两个单位向量,且,所以,,因为,则,不妨设,,设,则,,解得,则,因为,可得,则,所以,,当且仅当时,即当时,等号成立,因此,对于任意的实数、,的最小值为.故答案为:.15、【解析】先由抛物线的方程求出准线的方程,然后根据点到准线的距离可求,进而可得抛物线的标准方程.【详解】抛物线的准线方程为,点到其准线的距离为,由题意可得,解得,故抛物线的标准方程为.故答案为:.16、##0.5【解析】根据条件概率求概率的方法即可求得答案.【详解】设A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率为p,则,因为甲乙两地下雨相互独立,所以,于是在乙地下雨的条件下,甲地也下雨的概率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,公共弦长为【解析】(1)根据切线长公式计算即可得到,然后代入可得圆的方程.(2)联立两圆的方程作差可得直线的方程为,然后利用圆的弦长公式计算即可.【小问1详解】圆的标准方程为,所以圆心为,半径.由勾股定理可得,解得.所以圆的标准方程为.【小问2详解】由题意得圆的圆心,半径,圆的圆心,半径,因为,,所以圆和圆相交.设两圆相交于,两点,则两圆的方程相减得直线的方程为,圆心到直线的距离.所以,所以两圆的公共弦长为.18、(1)证明见解析;(2).【解析】(1)取的中点,连接,,,先证明平面,再由平面得,(2)等体积法求解.根据题目条件,先证明为三棱锥的高,再求出以为顶点,为底面的三棱锥的体积和以为顶点,为底面的三棱锥的体积,根据,求点到平面的距离.【详解】(1)证明:如图,取的中点,连接,,依题意可知,,均为正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即为三棱锥的高由题意得,∵为的中点,∴在中,,∴,,∴在中,边上的高,∴的面积的面积点到平面的距离即点到平面的距离设点到平面的距离为,由,得,即,解得,即点到平面的距离为19、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根据题意得到,再由关于角的余弦定理和整理化简得,再由的面积,即可求出的值.【小问1详解】由及正弦定理可得.【小问2详解】由锐角中得,根据余弦定理可得,代入得,整理得,即,解得,,解得.20、(1)函数单调递增区间为(0,1),单调递减区间为(1,+∞)(2)证明见解析(3)[1,+∞)【解析】(1)对函数求导后,由导数的正负可求出函数的单调区间,(2)由(1)可得,令,则可得,然后利用累加法可证得结论,(3)由,故,然后分和讨论的最大值与比较可得结果【小问1详解】当时,(),则,由,解得;由,解得,因此函数单调递增区间为(0,1),单调递减区间为(1,+∞)【小问2详解】由(1)知,当k=1时,,故令,则,即,所以【小问3详解】由,故当时,因为,所以,因此恒成立,且的根至多一个,故在(0,1]上单调递增,所以恒成立当时,令,解得当时,,则单调递增;当时,,则单调递减;于是,与恒成立相矛盾综上,的取值范围为[1,+∞)【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的单调区,利用导数求函数的最值,利用导数证明不等式,第(2)问解题的关键是利用(1)可得,从而得,然后令,得,最后累加可证得结论,考查数转化思想,属于较难题21、(1);(2)或.【解析】(1)根据抛物线的定义进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式进行求解即可.【小问1详解】因为,所以P到直线的距离等于,所以抛物线C的准线为,所以,,所以抛物线C的标准方程为;【小问2详解】当直线l的斜率不存在时,方程为,此时直线l恰与抛物线C相切当直线l的斜率存在时,设其方程为,联立方程,得若,显然不合题意;若,则,解得此时直线l的方程为综上,直线l与抛物线C相切时,l的方程为或.22、(1)A(1,7),(2)【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论