版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市南汇中学普通高考第一次适应性检测试题数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.2.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A. B. C. D.3.已知数列为等比数列,若,且,则()A. B.或 C. D.4.已知,,则()A. B. C.3 D.45.已知集合,,,则()A. B. C. D.6.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.57.已知为定义在上的偶函数,当时,,则()A. B. C. D.8.已知函数,,且,则()A.3 B.3或7 C.5 D.5或89.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.110.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.11.若a>b>0,0<c<1,则A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb12.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点()A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变二、填空题:本题共4小题,每小题5分,共20分。13.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.14.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.15.函数的定义域是___________.16.在等差数列()中,若,,则的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若,求不等式的解集;(2)已知,若对于任意恒成立,求的取值范围.18.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82819.(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.20.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.21.(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.22.(10分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.2、B【解析】
根据题意表示出各位上的数字所对应的算筹即可得答案.【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的.故选:.【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.3、A【解析】
根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.4、A【解析】
根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.5、D【解析】
根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.6、D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.7、D【解析】
判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.8、B【解析】
根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题9、B【解析】
过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.10、D【解析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.11、B【解析】试题分析:对于选项A,,,,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12、A【解析】
由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,,又,,又,,,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、55【解析】
由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.14、【解析】
根据条件概率的求法,分别求得,再代入条件概率公式求解.【详解】根据题意得所以故答案为:【点睛】本题主要考查条件概率的求法,还考查了理解辨析的能力,属于基础题.15、【解析】
由于偶次根式中被开方数非负,对数的真数要大于零,然后解不等式组可得答案.【详解】解:由题意得,,解得,所以,故答案为:【点睛】此题考查函数定义域的求法,属于基础题.16、-15【解析】
是等差数列,则有,可得的值,再由可得,计算即得.【详解】数列是等差数列,,又,,,故.故答案为:【点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
(1)时,分类讨论,去掉绝对值,分类讨论解不等式.(2)时,分类讨论去绝对值,得到解析式,由函数的单调性可得的最小值,通过恒成立问题,得到关于的不等式,得到的取值范围.【详解】(1)因为,所以,所以不等式等价于或或,解得或.所以不等式的解集为或.(2)因为,所以,根据函数的单调性可知函数的最小值为,因为恒成立,所以,解得.所以实数的取值范围是.【点睛】本题考查分类讨论去绝对值,分段函数求最值,不等式恒成立问题,属于中档题.18、(1)多2350人;(2)有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【解析】
(1)根据题意,知100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,即可估计该地区购买“小爱同学”的女性人数和购买“天猫精灵”的女性的人数,即可求得答案;(2)根据列联表和给出的公式,求出,与临界值比较,即可得出结论.【详解】解:(1)由题可知,100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,由于地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,估计购买“小爱同学”的女性有人.估计购买“天猫精灵”的女性有人.则,∴估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多2350人.(2)由题可知,,∴有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【点睛】本题考查随机抽样估计总体以及独立性检验的应用,考查计算能力.19、(1)证明见解析(2)【解析】
(1)连接,交与,连接,由,得出结论;(2)以为原点,,,分别为,,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【详解】(1)连接,交与,连接,在中,,又平面,平面,所以平面;(2)由平面平面,,为平面与平面的交线,故平面,故,又,所以平面,以为原点,,,分别为,,轴建立空间直角坐标系,,,,,,,设平面的法向量为,,,由,得,平面的法向量为,由,故二面角的大小为.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)28种;(2)分布见解析,.【解析】
(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3.,,,.故X的概率分布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年哈密货运运输驾驶员从业资格证考试试题
- 服装odm合同范例
- 武汉危化品仓储合同范例
- 电梯扶手销售合同范例
- 13《两茎灯草》教学实录-2023-2024学年统编版五年级语文下册
- 2025年泰州货运从业资格证怎么考试
- 家具承揽合同范例
- 产品检测合同范例
- 分数的简单计算第一课时(教学实录)-2024-2025学年三年级上册数学人教版
- 天府新区航空旅游职业学院《矿石学与矿相学》2023-2024学年第一学期期末试卷
- 小学一年级上册数学20以内进位加法单元测试卷1
- 直观教具在小学英语词汇教学中的运用初探
- 《制冷设备原理与维修》期末试卷试题及参考答案
- 初中生物教学仪器配备明细目录
- 供水管道工程现场管理办法
- 酒店委托管理模式下的财务治理
- 简单员工考勤表
- 信息化弱电项目试运行方案报告
- 农民工实名制台账
- (完整版)工程质量保证措施及质量保证体系
- 牙科诊所工作职责
评论
0/150
提交评论