版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省太原市四十八中高三第二次诊断性考试数学试题(2020眉山二诊)注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.2.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.3.若,,则的值为()A. B. C. D.4.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位5.执行如图所示的程序框图,则输出的的值是()A.8 B.32 C.64 D.1286.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.7.已知,,,,则()A. B. C. D.8.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.9.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.10.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.11.函数f(x)=的图象大致为()A. B.C. D.12.已知复数z,则复数z的虚部为()A. B. C.i D.i二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________.14.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.15.如图,直线是曲线在处的切线,则________.16.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求证:在区间上有且仅有一个零点,且;(2)若当时,不等式恒成立,求证:.18.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.19.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.20.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对所有的≥0,都有≤,求的最小值;(Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.21.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围22.(10分)已知,且满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.2、C【解析】
画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.3、A【解析】
取,得到,取,则,计算得到答案.【详解】取,得到;取,则.故.故选:.【点睛】本题考查了二项式定理的应用,取和是解题的关键.4、A【解析】
运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.5、C【解析】
根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】
令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.7、D【解析】
令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,从而证出,即可得到答案.【详解】时,令,求导,,故单调递增:∴,当,设,,又,,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.8、B【解析】
首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.9、B【解析】
先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】
由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.11、D【解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)==-<0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.12、B【解析】
利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,,从而可求得,得斜率.【详解】由得,即联立得解得或,∴.故答案为:.【点睛】本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法.14、【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.15、.【解析】
求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.【点睛】本题考查导数与曲线的切线的几何意义,属于基础题.16、64【解析】
由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解析】
(1)利用求导数,判断在区间上的单调性,然后再证异号,即可证明结论;(2)当时,不等式恒成立,分离参数只需时,恒成立,设(),需,根据(1)中的结论先求出,再构造函数结合导数法,证明即可.【详解】(1),令,则,所以在区间上是增函数,则,所以在区间上是增函数.又因为,,所以在区间上有且仅有一个零点,且.(2)由题意,在区间上恒成立,即在区间上恒成立,当时,;当时,恒成立,设(),所以.由(1)可知,,使,所以,当时,,当时,,由此在区间上单调递减,在区间上单调递增,所以.又因为,所以,从而,所以.令,,则,所以在区间上是增函数,所以,故.【点睛】本题考查导数的综合应用,涉及到函数的单调性、函数的零点、极值最值、不等式的证明,分离参数是解题的关键,意在考查逻辑推理、数学计算能力,属于较难题.18、(1)证明见解析;(2)最小值为1【解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.19、(1)(2)【解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.20、(Ⅰ)函数在上单调递减,在单调递增;(Ⅱ);(Ⅲ)证明见解析.【解析】
(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;(Ⅲ)先求出数列是以为首项,1为公差的等差数列,,,问题转化为证明:,通过换元法或数学归纳法进行证明即可.【详解】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),,当时,f′(x)<2,当时,f′(x)>2,所以函数f(x)在上单调递减,在单调递增.(Ⅱ)设,则,因为x≥2,故,(ⅰ)当a≥1时,1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)单调递减,而g(2)=2,所以对所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)当1<a<1时,2<1﹣a<1,若,则g′(x)>2,g(x)单调递增,而g(2)=2,所以当时,g(x)>2,即f(x)>ax;(ⅲ)当a≤1时,1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)单调递增,而g(2)=2,所以对所有的x>2,g(x)>2,即f(x)>ax;综上,a的最小值为1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an•an+1,由a1=1得,an≠2,所以,数列是以为首项,1为公差的等差数列,故,,,⇔,由(Ⅱ)知a=1时,,x>2,即,x>2.法一:令,得,即因为,所以,故.法二:⇔下面用数学归纳法证明.(1)当n=1时,令x=1代入,即得,不等式成立(1)假设n=k(k∈N*,k≥1)时,不等式成立,即,则n=k+1时,,令代入,得,即:,由(1)(1)可知不等式对任何n∈N*都成立.故.考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值;3、数列的通项公式;4、数列的前项和;5、不等式的证明.21、(1).(2).【解析】试题分析:(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到关于a的不等式,解出即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中英语 名词性从句语法 练习 答 新人教版必修
- 第2章 基本数据类型与表达式课件
- 2024-2025学年专题11.4 机械能及其转化-八年级物理人教版(下册)含答案
- 创业计划书课件
- 经典版脑筋急转弯及答案
- 5年中考3年模拟试卷初中生物八年级下册第二节基因在亲子代间的传递
- 高考语文作文主题讲解之 网络利弊
- 高低压供配电设备检查和检修保养合同3篇
- 苏少版小学音乐一年级下册教案 全册
- 人教版 五年级音乐(上册)教案
- 北京某办公楼装修改造施工组织设计方案
- 《8的乘法口诀》(教案)-2024-2025学年人教版数学二年级上册
- 2024年首届全国标准化知识竞赛考试题库-上(单选题部分)
- 亚临界循环流化床锅炉深度调峰运行技术导则
- 新苏教版一年级上册数学全册课件(2024年新版教材)
- 2024年湖北武汉市洪山区面向社会招聘社区干事235人历年高频500题难、易错点模拟试题附带答案详解
- 中国药物性肝损伤基层诊疗与管理指南(2024年)解读 2
- 超市经营服务方案投标方案(技术标)
- 2024年重庆新课标高考生物试卷(原卷版)
- 第二章中国的自然环境单元复习课件八年级地理上学期人教版
- Unit 2 Different familiesPart B How are families different(教学设计)-2024-2025学年人教PEP版英语三年级上册
评论
0/150
提交评论