上海中学2024年数学九上开学学业水平测试模拟试题【含答案】_第1页
上海中学2024年数学九上开学学业水平测试模拟试题【含答案】_第2页
上海中学2024年数学九上开学学业水平测试模拟试题【含答案】_第3页
上海中学2024年数学九上开学学业水平测试模拟试题【含答案】_第4页
上海中学2024年数学九上开学学业水平测试模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页上海中学2024年数学九上开学学业水平测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是()A.27cm2 B.24cm2 C.22cm2 D.20cm22、(4分)如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.23 B.3 C.3 D.253、(4分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)A.-3 B.1 C.5 D.84、(4分)当x=2时,函数y=-x2+1的值是()A.-2 B.-1 C.2 D.35、(4分)质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是()机器甲乙丙丁平均数(单位:cm)4.013.983.994.02方差0.032.41.10.3A.甲 B.乙 C.丙 D.丁6、(4分)若两个相似多边形的面积之比为1∶3,则对应边的比为(

)A.1∶3 B.3∶1

C.1:

D.:17、(4分)不等式6﹣4x≥3x﹣8的非负整数解为()A.2个 B.3个 C.4个 D.5个8、(4分)要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若分式的值是0,则x的值为________.10、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)11、(4分)如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.12、(4分)在一个矩形中,若一个角的平分线把一条边分成长为3cm和4cm的两条线段,则该矩形周长为_________13、(4分)若,则________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线与轴、轴分别交于,点的坐标为,是直线在第一象限内的一个动点(1)求⊿的面积与的函数解析式,并写出自变量的取值范围?(2)过点作轴于点,作轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由?15、(8分)如图,ABCD的对角线AC与BD交于点O,AC⊥AB.若AB=6cm,AD=10cm,试求OA,OB的长.16、(8分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:(1);(2).17、(10分)王老师从学校出发,到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).(1)求王老师步行和骑共享单车的平均速度分别为多少?(2)买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?18、(10分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.20、(4分)写出在抛物线上的一个点________.21、(4分)函数y=kx(k0)的图象上有两个点A1(,),A2(,),当<时,>,写出一个满足条件的函数解析式______________.22、(4分)如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.23、(4分)如图,平行四边形中,为的中点,连接,若平行四边形的面积为,则的面积为____.二、解答题(本大题共3个小题,共30分)24、(8分)已知一次函数y=(1m-1)x+m-1.(1)若此函数图象过原点,则m=________;(1)若此函数图象不经过第二象限,求m的取值范围.25、(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标;(3)观察图象,直接写出不等式的解集.26、(12分)已知Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a,b,c,设△ABC的面积为S.(1)填表:三边a,b,cSc+b-ac-b+a3,4,565,12,13208,15,1724(2)①如果m=(c+b-a)(c-b+a),观察上表猜想S与m之间的数量关系,并用等式表示出来.②证明①中的结论.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.【详解】解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,

∴FD=BF=BC-FC=18-FC=18-x,

Rt△CDF中,DF2=FC2+CD2,

即(18-x)2=x2+62,

解得x=8,

∴面积为故选:B.解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.2、A【解析】

利用平移的性质得出BC,CF、DF的长,得∠BDF=90°,∠DBF=30°,可得结论.【详解】解:由平移得:ΔABC≅ΔDEF,∵ΔABC是等边三角形,且AB=2,∴BC=EF=DF=2,∠DEF=60°,∴∠CBD=∠CDB=30°,∵∠CDF=60°,∴∠BDF=90°,RtΔBDF中,∴BD=23故选:A.此题主要考查了平移的性质以及等边三角形的性质,根据题意得出∠BDF=90°是解决问题的关键.3、D【解析】当点C横坐标为-3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选D.4、B【解析】

把x=2代入函数关系式进行计算即可得解.【详解】x=2时,y=−×22+1=−1.故选:B.本题考查了函数值求解,把自变量的值代入进行计算即可,比较简单.5、A【解析】

先比较出平均数,再根据方差的意义即可得出答案.【详解】解:由根据方差越小越稳定可知,甲的质量误差小,故选:A.此题考查方差的意义.解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、C【解析】

直接根据相似多边形的性质进行解答即可.【详解】∵两个相似多边形的面积之比为1:3,∴这两个多边形对应边的比为=1:.故选C.本题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方.7、B【解析】

移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤1.故其非负整数解为:0,1,1,共3个.故选B.8、B【解析】

根据分式有意义的条件可得x+1≠0,再解即可.【详解】由题意得:x+1≠0,解得:x≠-1,故选B.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】

根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.10、>【解析】

根据一次函数的性质即可得答案.【详解】∵一次函数y=-3x+1中,-3<0,∴函数图象经过二、四象限,y随x的增大而减小,∵-4<1,∴y1>y2,故答案为:>本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.11、【解析】

过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.【详解】过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:

∴EM∥GO∥FN

∵2EG=FG

∴根据平行线分线段成比例定理得:NO=2MO

∵E(-1,1)

∴MO=1

∴NO=2

∴点F的横坐标为2

∵F在的图象上

∴F(2,2)

又∵E(-1,1)

∴由待定系数法可得:直线EF的解析式为:y=

当x=0时,y=

∴G(0,)

∴OG=

故答案为:.此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.12、20或22【解析】

根据题意矩形的长为7,宽为3或4,因此计算矩形的周长即可.【详解】根据题意可得矩形的长为7当形成的直角等腰三角形的直角边为3时,则矩形的宽为3当形成的直角等腰三角形的直角边为4时,则矩形的宽为4矩形的宽为3或4周长为或故答案为20或22本题主要考查等腰直角三角形的性质,关键在于确定宽的长.13、【解析】

由,得到a=b,代入所求的代数式,即可解决问题.【详解】∵,∴a=b,∴,故答案为:.该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.三、解答题(本大题共5个小题,共48分)14、(1),;(2)的最小值为【解析】分析:本题的⑴问直接根据坐标来表示⊿的底边和底边上的高,利用三角形的面积公式得出函数解析式;本题的⑵抓住四边形是矩形,矩形的对角线相等即,从而把转化到上来解决,当的端点运动到时最短,以此为切入点,问题可获得解决.详解:⑴.∵的坐标为,是直线在第一象限的一个动点,且轴.∴,∴整理得:自变量的取值范围是:⑵.存在一点使得的长最小.求出直线与轴交点的坐标为,与轴交点的坐标为∴∴根据勾股定理计算:.∵轴,轴,轴轴∴∴四边形是矩形∴当的端点运动到(实际上点恰好是的中点)时的最短(垂线段最短)(见示意图)又∵∴点为线段中点(三线合一)∴(注:也可以用面积方法求解)∴即的最小值为点睛:本题的⑴问直接利用三角形的面积公式并结合点的坐标可以求解析式;本题的⑵问要打破平时求最小值的思路,把问题进行转化,通过求的最小值来得到的最小值,构思巧妙!15、OA=4cm,OB=cm.【解析】

由平行四边形的性质得出OA=OC,OB=OD,BC=AD=10cm,由勾股定理求出AC==8cm,得出OA=AC=4cm,再由勾股定理求出OB即可.【详解】解:解:∵四边形ABCD是平行四边形,

∴OA=OC,OB=OD,BC=AD=10cm,

∵AC⊥AB,

∴∠BAC=90°,

∴AC==8cm,

∴OA=AC=4cm,

∴OB==本题考查平行四边形的性质、勾股定理等知识,解题的关键是灵活应用平行四边形的性质解决问题,属于中考常考题型.16、(1)见解析;(2)见解析【解析】

(1)因为四边形是平行四边形,,证得≌,即可求出;(2)因为四边形ABCD是平行四边形,G是OC的中点,E是OA的中点,所以可以证得OF=OH,又根据(1)中结论,即可得出四边形EFGH是平行四边形,根据平行四边形性质可得.【详解】证明:(1)∵四边形是平行四边形,∴,,∴,∴≌,∴(2)∵是的中点,是的中点,∴,,∴又∵∴四边形是平行四边形,∴本题考查了平行四边形的判定与性质.解题的关键是选择适宜的证明方法.此题出现了对角线,所以选择对角线互相平分的四边形是平行四边形证明比较简单.17、(1),(2)【解析】

(1)设王老师步行的平均速度,则他骑车的平均速度,根据“到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍”列出方程,即可解答.(2)设王老师返回时步行了,根据(1)列出不等式,即可解答.【详解】解:(1)设王老师步行的平均速度,则他骑车的平均速度,根据题意,得.解这个方程,得.经检验,是原方程的根答:王老师步行的平均速度为,他骑车的平均速度为.(2)设王老师返回时步行了.则,.解得,.答:王老师,返回时,最多可步行.此题考查了分式方程的应用,一元一次不等式的应用,解题关键在于根据题意正确列出方程、列出不等式.18、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.【解析】

(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;

(2)设这所学校再次购买a个甲种足球,根据题意列出不等式解答即可.【详解】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意,可得:=2×,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据题意,可得:50-a≥a,解得:a≤,∵a为整数,∴a≤1.设总花费为y元,由题意可得,y=50a+70(50-a)=-20a+2.∵-20<0,∴y随x的增大而减小,∴a取最大值1时,y的值最小,此时50-a=3.答:这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是根据题意列出方程.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.【详解】解:∵四边形AEFG是正方形,

∴∠AEF=90°,

∵∠CEF=15°,

∴∠AEB=180°-90°-15°=75°,

∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,

∵四边形ABCD是平行四边形,

∴∠D=∠B=1°

故答案为:1.本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.20、(0,﹣4)(答案不唯一)【解析】

把(0,﹣4)点的横坐标代入函数式,比较纵坐标是否相符,即可解答.【详解】将(0,﹣4)代入,得到,故(0,﹣4)在抛物线上,故答案为:(0,﹣4).此题考查二次函数图象上点的坐标特征,解题关键在于把点代入解析式.21、y=-x(k<0即可)【解析】

根据A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2判断出函数图象的增减性即可.【详解】解:∵A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2,

∴函数y=kx(k≠0)满足k<0

∴y=-x(k<0即可);

故答案为:y=-x(k<0即可).本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.22、【解析】

如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.【详解】如图,连接CF,作FM⊥BC于M,FN⊥AC于N.

∵∠FNC=∠MCN=∠FMC=90°,

∴四边形CMFN是矩形,

∴∠MFN=∠AFE=90°,

∴∠AFN=∠MFE,

∵AF=FE,∠FNA=∠FME=90°,

∴△FNA≌△FME(AAS),

∴FM=FM,AN=EM,

∴四边形CMFN是正方形,

∴CN=CM,CF=CM,∠FCN=∠FCM=45°,

∵AC+CE=CN+AN+CM-EM=2CM,

∴CF=(AC+CE).

∴点F在射线CF上运动(CF是∠ACB的角平分线),

当点E与D重合时,CF=(AC+CD)=2,

当点E与B重合时,CF=(AC+CB)=,

∵-2=,

∴点F的运动的路径长为.

故答案为:.此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.23、6【解析】

如图,连接AC.首先证明△ABC≌△CDA,可得S△ABC=S△ADC=×24=12(cm2),由AE=DE,可得S△CDE=S△ADC=6;【详解】解:如图,连接.∵四边形是平行四边形,∴,,∵,∴,∴,∵,∴,故答案为6本题考查平行四边形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、解答题(本大题共3个小题,共30分)24、(1)1;(1)-<m≤1.【解析】

(1)把坐标原点代入函数解析式进行计算即可得解;(1)根据图象不在第二象限,k>0,b0列出不等式组求解即可.【详解】(1)∵函数的图象经过原点,∴m-1=0,解得m=1;(1)∵函数的图象不过第二象限,∴,由①得,m>-,由②得,m1,所以,-<m1.本题考查了两直线平行的问题,一次函数与系数的关系,一次函数图象上点的坐标特征,综合题但难度不大,熟记一次函数的性质是解题的关键.25、(1)反比例函数的解析式为;一次函数的解析式为y=-x+5;(2)点P的坐标为(,0);(3)x<0或1≤x≤4【解析】

(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论