上海市浦东新区南片十六校2024年数学九上开学统考模拟试题【含答案】_第1页
上海市浦东新区南片十六校2024年数学九上开学统考模拟试题【含答案】_第2页
上海市浦东新区南片十六校2024年数学九上开学统考模拟试题【含答案】_第3页
上海市浦东新区南片十六校2024年数学九上开学统考模拟试题【含答案】_第4页
上海市浦东新区南片十六校2024年数学九上开学统考模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页上海市浦东新区南片十六校2024年数学九上开学统考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)的计算结果是()A.3 B.9 C.6 D.22、(4分)如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于()A.18 B.15 C.13 D.123、(4分)函数与在同一坐标系中的图象可能是()A. B.C. D.4、(4分)若y=x+2–b是正比例函数,则b的值是()A.0 B.–2 C.2 D.–0.55、(4分)下列说法正确的是()A.长度相等的两个向量叫做相等向量;B.只有方向相同的两个向量叫做平行向量;C.当两个向量不相等时,这两个有向线段的终点一定不相同;D.减去一个向量相当于加上这个向量的相反向量.6、(4分)如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO7、(4分)2019年6月19日,重庆轨道十八号线(原5A线)项目加快建设动员大会在项目土建七标段施工现场矩形,预计改线2020年全面建成,届时有效环节主城南部交通拥堵,全线已完成桩点复测,滩子口站到黄桷坪站区间施工通道等9处工点打围,在此过程中,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了施工通道工点打围。下面能反映该工程施工道路y(米)与时间x(天)的关系的大致图像是()A. B. C. D.8、(4分)若bk>0,则直线y=kx-b一定通过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)不改变分式的值,使分子、分母的第一项系数都是正数,则=_____.10、(4分)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.11、(4分)与最简二次根式3是同类二次根式,则a=_____.12、(4分)计算:(﹣1)0+(﹣)﹣2=_____.13、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.三、解答题(本大题共5个小题,共48分)14、(12分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”某校本学年开展了读书活动,在这次活动中,八年级班40名学生读书册数的情况如表读书册数45678人数人6410128根据表中的数据,求:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.15、(8分)为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,共调查名学生;(2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数;(4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.16、(8分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.17、(10分)如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2(2)能围成总面积为240m2的长方形花圃吗?说明理由18、(10分)甲、乙两运动员的五次射击成绩如下表(不完全):(单位:环)第1次第2次第3次第4次第5次甲乙ab9若甲、乙射击平均成绩一样,求的值;在条件下,若是两个连续整数,试问谁发挥的更稳定?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,AE=4,BC=8,有下列结论:①DE=4;②S△AED=S四边形ABCD;③DE平分∠ADC;④∠AED=∠ADC.其中正确结论的序号是_____(把所有正确结论的序号都填在横线上)20、(4分)若是关于的方程的一个根,则方程的另一个根是_________.21、(4分)如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.22、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.23、(4分)如图,河坝横断面迎水坡的坡比是(坡比是斜坡两点之间的高度差与水平距离之比),坝高,则坡面的长度是_______.二、解答题(本大题共3个小题,共30分)24、(8分)(2005•荆门)某校初中三年级270名师生计划集体外出一日游,乘车往返,经与客运公司联系,他们有座位数不同的中巴车和大客车两种车型可供选择,每辆大客车比中巴车多15个座位,学校根据中巴车和大客车的座位数计算后得知,如果租用中巴车若干辆,师生刚好坐满全部座位;如果租用大客车,不仅少用一辆,而且师生坐完后还多30个座位.(1)求中巴车和大客车各有多少个座位?(2)客运公司为学校这次活动提供的报价是:租用中巴车每辆往返费用350元,租用大客车每辆往返费用400元,学校在研究租车方案时发现,同时租用两种车,其中大客车比中巴车多租一辆,所需租车费比单独租用一种车型都要便宜,按这种方案需要中巴车和大客车各多少辆?租车费比单独租用中巴车或大客车各少多少元?25、(10分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.26、(12分)州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

求出的结果,即可选出答案.【详解】解:=3,故选:A.本题考查了二次根式的性质的应用,注意:.2、C【解析】

先根据线段垂直平分线的性质得出,故可得出的周长,由此即可得出结论.【详解】解:在中,,,是线段的垂直平分线,,的周长.故选:C.本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.3、D【解析】

根据k值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.【详解】在函数与中,当k>0时,图象都应过一、三象限;当k<0时,图象都应过二、四象限,故选:D.本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.4、C【解析】

根据正比例函数的定义可得关于b的方程,解出即可.【详解】解:由正比例函数的定义可得:2-b=0,解得:b=2.故选C.考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.5、D【解析】【分析】相等向量:长度相等且方向相同的两个向量叫做相等向量;平行向量(也叫共线向量):方向相同或相反的非零向量;平行向量包含相等向量的情况.即相等向量一定是平行向量,但是平行向量不一定是相等向量;长度相等且方向相反的两个向量.根据相关定义进行判断.【详解】长度相等且方向相同的两个向量叫做相等向量,故选项A错误;方向相同或相反的非零向量叫做平行向量,故选项B错误;当两个向量不相等时,这两个有向线段的终点可能相同,故选项C错误;减去一个向量相当于加上这个向量的相反向量,故选项D正确.故选:D【点睛】本题考核知识点:向量.解题关键点:理解向量的相关定义.6、D【解析】A选项:∵AD∥BC,

∴∠ADB=∠CBD,

在△BOC和△DOA中,∴△BOC≌△DOA(AAS),

∴BO=DO,

∴四边形ABCD是平行四边形,正确,故本选项错误;

B选项:∵∠ABC=∠ADC,AD∥BC,

∴∠ADC+∠DCB=180°,

∴∠ABC+∠BCD=180°,

∴AB∥DC,

∴四边形ABCD是平行四边形,正确,故本选项错误;

C选项:∵AB=CD,AD=BC,

∴四边形ABCD是平行四边形,正确,故本选项错误;

D选项:由∠ABD=∠ADB,∠BAO=∠DCO,

无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】平行四边形的判定有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.7、C【解析】

根据题意,该工程中途被迫停工几天,后来加速完成,即可得到图像.【详解】解:根据题意可知,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,则C的图像符合题意;故选择:C.本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.8、D【解析】

根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.【详解】解:由bk>0,知,①b>0,k>0;②b<0,k<0;①b>0,k>0时,直线经过第一、三、四象限,②b<0,k<0时,直线经过第一、二、四象限.综上可得,函数一定经过一、四象限.故选:D.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据分式的基本性质即可求出答案.【详解】原式==,故答案为:本题考查分式的基本性质,分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.10、110【解析】

延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+∠OBF=90°,

又∵直角△ABC中,∠ABC+∠ACB=90°,

∴∠OBF=∠ACB,

在△OBF和△ACB中,

∴△OBF≌△ACB(AAS),

∴AC=OB,

同理:△ACB≌△PGC,

∴PC=AB,

∴OA=AP,

所以,矩形AOLP是正方形,

边长AO=AB+AC=3+4=7,

所以,KL=3+7=10,LM=4+7=11,

因此,矩形KLMJ的面积为10×11=110.本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.11、3【解析】

先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于的方程,解出即可.【详解】解:∵与最简二次根式是同类二次根式∴,解得:故答案为:本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于的方程是解题的关键.12、5【解析】

按顺序分别进行0次幂运算、负指数幂运算,然后再进行加法运算即可.【详解】(﹣1)0+(﹣)﹣2=1+4=5,故答案为:5.本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的关键.13、-2【解析】

由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.【详解】解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,解得:m=﹣2,故答案为:﹣2.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.三、解答题(本大题共5个小题,共48分)14、(1)该班学生读书册数的平均数为册.(2)该班学生读书册数的中位数为册.【解析】

(1)根据平均数=读书册数总数÷读书总人数,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【详解】解:该班学生读书册数的平均数为:册,答:该班学生读书册数的平均数为册.将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:册.答:该班学生读书册数的中位数为册.本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15、(1)200;(2)作图略;(3)108°;(4)1.【解析】试题分析:根据其他的人数和比例得出总人数;根据总人数和比例求出古筝和琵琶的人数;根据二胡的人数和总人数的比例得出圆心角的度数;根据总人数和喜欢古筝的比例得出人数.试题解析:(1)20÷10%=200(名)答:一共调查了200名学生;(2)最喜欢古筝的人数:200×25%=50(名),最喜欢琵琶的人数:200×20%=40(名);补全条形图如图;(3)二胡部分所对应的圆心角的度数为:60200(4)1500×30200答:1500名学生中估计最喜欢古琴的学生人数为1.考点:统计图.16、(1)证明见解析;(2)证明见解析.【解析】

(1)在□ABCD中,AB∥CD,AB=CD,∵E、F分别为边AB、CD的中点,∴DF=CD,BE=AB,∴DF=BE,DF∥BE,∴四边形BEDF为平行四边形,∴DE∥BF;(2)∵AG∥DB,∴∠G=∠DBC=90°,∴△DBC为直角三角形,又∵F为边CD的中点,∴BF=CD=DF,又∵四边形BEDF为平行四边形,∴四边形BEDF为菱形.本题主要考查了平行四边形的性质、菱形的判定,直角三角形中斜边中线等于斜边一半,解题的关键是掌握和灵活应用相关性质.17、(1)10米;(1)不能围成总面积为240m2【解析】

(1)设出AB的长是x米,则BC的长为(48-3x)米,由长方形的面积计算公式列方程解答即可;

(1)利用(1)的方法列出方程,利用判别式进行解答.【详解】解:(1)设AB的长是x米,则BC的长为(48-3x)米,根据题意列方程得,

x(48-3x)=180,

解得x1=6,x1=10,

当x=6时,48-3x=30>15,不符合题意,舍去;

当x=10时,48-3x=18<15,符合题意;

答:当AB的长是10米时,围成长方形花圃ABCD的面积为180m1.

(1)不能,理由如下:

同(1)可得x(48-3x)=140,

整理得x1-16x+80=0,

△=(-16)1-4×80=-64<0,

所以此方程无解,

即不能围成总面积为140m1的长方形花圃.此题主要考查运用长方形面积计算方法列一元二次方程解决实际问题与根的判别式的应用.18、(1);(2)乙更稳定【解析】

(1)求出甲的平均数为9,再根据甲、乙射击平均成绩一样,即乙的平均数也是9,即可得出的值;(2)根据题意令,分别计算甲、乙的方差,方差越小.成绩越稳定.【详解】解:(1)(环)(环)(2)且为连续的整数令,,乙更稳定本题考查的知识点是求数据的算术平均数以及方差,掌握算术平均数以及方差的计算公式是解此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、①②③【解析】

利用平行四边形的性质结合勾股定理以及三角形面积求法分别分析得出答案.【详解】解:①∵在▱ABCD中,AE⊥BC,垂足为E,AE=4,BC=8,∴AD=8,∠EAD=90°,∴DE==,故此选项正确;②∵S△AED=AE•ADS四边形ABCD=AE×AD,∴S△AED=S四边形ABCD,故此选项正确;③∵AD∥BC,∴∠ADE=∠DEC,∵AB=5,AE=4,∠AEB=90°,∴BE=3,∵BC=8,∴EC=CD=5,∴∠CED=∠CDE,∴∠ADE=∠CDE,∴DE平分∠ADC,故此选项正确;④当∠AED=∠ADC时,由③可得∠AED=∠EDC,故AE∥DC,与已知AB∥DC矛盾,故此选项错误.故答案为:①②③.此题主要考查了平行四边形的性质以及勾股定理、三角形面积求法等知识,正确应用平行四边形的性质是解题关键.20、【解析】

设另一个根为y,利用两根之和,即可解决问题.【详解】解:设方程的另一个根为y,则y+=4,解得y=,即方程的另一个根为,故答案为:.题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、1【解析】

根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.【详解】连接OB.∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.故答案为1.本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.22、6cm【解析】

根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.【详解】解::如图,D,E,F分别是△ABC的三边的中点,

则DE=AC,DF=BC,EF=AB.

∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.23、【解析】

根据坡度的概念求出AC,根据勾股定理求出AB.【详解】解:∵坡AB的坡比是1:,坝高BC=2m,∴AC=2,由勾股定理得,AB==1(m),故答案为:1.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)每辆中巴车有座位45个,每辆大客车有座位60个.(1)租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100元.【解析】试题分析:(1)每辆车的座位数:设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,可座学生人数分别是:170、(170+30).车辆数可以表示为,因为租用大客车少一辆.所以,中巴车的辆数=大客车辆数+1,列方程.(1)在保证学生都有座位的前提下,有三种租车方案:①单独租用中巴车,需要租车辆,可以计算费用.②单独租用大客车,需要租车(6﹣1)辆,也可以计算费用.③合租,设租用中巴车y辆,则大客车(y+1)辆,座位数应不少于学生数,根据题意列出不等式.注意,车辆数必须是整数.三种情况,通过比较,就可以回答题目的问题了.解:(1)设每辆中巴车有座位x个,每辆大客车有座位(x+15)个,依题意有解之得:x1=45,x1=﹣90(不合题意,舍去).经检验x=45是分式方程的解,故大客车有座位:x+15=45+15=60个.答:每辆中巴车有座位45个,每辆大客车有座位60个.(1)解法一:①若单独租用中巴车,租车费用为×350=1100(元)②若单独租用大客车,租车费用为(6﹣1)×400=1000(元)③设租用中巴车y辆,大客车(y+1)辆,则有45y+60(y+1)≥170解得y≥1,当y=1时,y+1=3,运送人数为45×1+60×3=170人,符合要求这时租车费用为350×1+400×3=1900(元)故租用中巴车1辆和大客车3辆,比单独租用中巴车的租车费少100元,比单独租用大客车的租车费少100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论