山东省济宁市田家炳中学2024-2025学年数学九年级第一学期开学复习检测试题【含答案】_第1页
山东省济宁市田家炳中学2024-2025学年数学九年级第一学期开学复习检测试题【含答案】_第2页
山东省济宁市田家炳中学2024-2025学年数学九年级第一学期开学复习检测试题【含答案】_第3页
山东省济宁市田家炳中学2024-2025学年数学九年级第一学期开学复习检测试题【含答案】_第4页
山东省济宁市田家炳中学2024-2025学年数学九年级第一学期开学复习检测试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页山东省济宁市田家炳中学2024-2025学年数学九年级第一学期开学复习检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A. B. C. D.2、(4分)如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大 B.减小 C.不变 D.先增大再减小3、(4分)下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个.A.4 B.3 C.2 D.14、(4分)若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣的图象上,则下列判断中正确的是()A.y1<y2<y3 B.y3<y1<y2 C.y2<y3<y1 D.y3<y2<y15、(4分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为,则所有正方形的面积的和是.A.28 B.49 C.98 D.1476、(4分)下列二次根式中,是最简二次根式的是()A. B. C. D.7、(4分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8、(4分)已知一组数据:1,2,8,,7,它们的平均数是1.则这组数据的中位数是()A.7 B.1 C.5 D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD=_____cm.10、(4分)数据1,4,5,6,4,5,4的众数是___.11、(4分)在关系式V=31-2t中,V随着t的变化而变化,其中自变量是_____,因变量是_____,当t=_____时,V=1.12、(4分)小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.13、(4分)当x_____时,分式有意义.三、解答题(本大题共5个小题,共48分)14、(12分)(1)计算:;(2)已知,求代数式的值.15、(8分)分解因式和利用分解因式计算(1)(a2+1)2-4a2(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。16、(8分)某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.17、(10分)某养猪场要出售200只生猪,现在市场上生猪的价格为11元/,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的重量(单位:)如下:76,71,72,86,1.(1)计算这5只生猪的平均重量;(2)估计这200只生猪能卖多少钱?18、(10分)求不等式组的正整数解.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知是一元二次方程的两实根,则代数式_______.20、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为_.21、(4分)如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.22、(4分)如图,与穿过正六边形,且,则的度数为______.23、(4分)为了让居民有更多休闲和娱乐的地方,江宁区政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖进行铺设现有下面几种形状的正多边形地砖:正三角形、正方形、正五边形、正六边形,其中不能进行平面镶嵌的有______.二、解答题(本大题共3个小题,共30分)24、(8分)已知:如图,在ABCD中,延长线AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.25、(10分)如图1,正方形ABCD中,AB=4cm,点P从点D出发沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2)(1)是否存在某一时刻t,使得PQ∥BD?若存在,求出t值;若不存在,说明理由(2)设△PQC的面积为s(cm2),求s与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,说明理由.26、(12分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.(1)如图①,求证:EF//AC;(2)如图②,EF与边CD交于点G,连接BG,BE,①求证:△BAE≌△BCG;②若BE=EG=4,求△BAE的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据正比例函数与一次函数的图象性质作答.【详解】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当1<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<1时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限,当(k﹣2)x+k=kx时,x=<1,所以两函数交点的横坐标小于1.故选:C.本题考查一次函数的图象性质,正比例函数的图象性质,关键是由k的取值确定函数所在的象限.2、C【解析】

首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【详解】解:如图,过A作AG⊥BD于G,

则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),

∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,

∴OA=OD,

∴PE+PF=AG,

∴PE+PF的值是定值,

故选C.本题考查矩形的性质、等腰三角形的性质、三角形的面积计算.解决本题的关键是证明等腰三角形底边上的任意一点到两腰距离的和等于腰上的高.3、C【解析】

∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4、B【解析】

先根据反比例函数中,k2+1>0,可知-(k2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数的,-(k2+1)<0,∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y随x的增大而增大.∵-2<-1<0,∴点、位于第二象限,且在第二象限内y随x的增大而增大,∴y2>y1>0,又∵1>0,∴点位于第四象限,∴y3<0,∴y3<y1<y2.故选择B.本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.5、D【解析】

根据勾股定理即可得到正方形A的面积加上B的面积等于E的面积,同理,C,D的面积的和是F的面积,E,F的面积的和是M的面积.即可求解.【详解】解:根据勾股定理可得:SA+SB=SE,SC+SD=SM,SE+SF=SM所以,所有正方形的面积的和是正方形M的面积的3倍:即49×3=147cm1.故选:D理解正方形A,B的面积的和是E的面积是解决本题的关键.若把A,B,E换成形状相同的另外的图形,这种关系仍成立.6、D【解析】

根据最简二次根式的概念即可求出答案.【详解】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选:D.本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.7、A【解析】

首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.8、A【解析】分析:首先根据平均数为1求出x的值,然后根据中位数的概念求解.详解:由题意得:1+2+8+x+2=1×5,解得:x=2,这组数据按照从小到大的顺序排列为:2,1,2,2,8,则中位数为2.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

根据含30°角的直角三角形的性质求出AB,再根据直角三角形斜边上的中线的性质求出CD即可.【详解】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1cm,∴AB=1BC=4cm,∵Rt△ABC中,∠ACB=90°,点D是AB的中点,∴CD=AB=1cm.故答案为:1.本题考查含30°角的直角三角形的性质和直角三角形斜边上的中线的性质,能灵活运用定理进行推理是解答此题的关键.10、1【解析】

众数是出现次数最多的数,据此求解即可.【详解】解:数据1出现了3次,最多,所以众数为1,故答案为:1.此题考查了众数的知识.众数是这组数据中出现次数最多的数.11、tV15【解析】∵在关系式V=31-2t中,V随着t的变化而变化,∴在关系式V=31-2t中,自变量是;因变量是;在V=31-2t中,由可得:,解得:,∴当时,.故答案为(1);(2);(3)15.12、1【解析】

先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),

所以小明回家的速度是每分钟步行10÷10=1(米).

故答案为:1.本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.13、≠.【解析】

要使分式有意义,分式的分母不能为1.【详解】因为4x+5≠1,所以x≠-.故答案为≠−.解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.三、解答题(本大题共5个小题,共48分)14、(1);(2)0.【解析】

(1)先进行二次根式的乘除法运算,然后再进行减法运算即可;(2)将原式利用完全平方公式进行变形,然后将x的值代入进行计算即可.【详解】(1)原式;(2)原式=,将代入原式得,.本题考查二次根式的化简求值,灵活运用二次根式的性质进行解题是关键.15、(1);(2)1.18【解析】

(1)原式利用平方差公式及完全平方公式分解即可;

(2)原式提取公因式,将已知等式代入计算即可求出值.【详解】解:(1)原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a+1)2(2)∵x+y=1.2,x+3y=1∴2x+4y=1.2∴x+2y=1.6∴原式=3(x2+4xy+4y2)=3(x+2y)2=3×1.6×1.6=1.18此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16、(1)30元,32元(2)(3)当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;当购买数量为30个时,购买两种品牌的计算机花费相同;当购买数量超过30个时,购买B品牌的计算机更合算.【解析】

(1)根据“购买2个A品牌和3个B品牌的计算器共需156元”和“购买3个A品牌和1个B品牌的计算器共需122元”列方程组求解即可.(2)根据题意分别列出函数关系式.(3)由、、列式作出判断.【详解】解:(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:,解得.答:A,B两种品牌计算机的单价分别为30元,32元.(2)由题意可知:,即.当时,;当时,,即.(3)当购买数量超过5个时,.①当时,,解得,即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;②当时,,解得,即当购买数量为30个时,购买两种品牌的计算机花费相同;③当时,,解得,即当购买数量超过30个时,购买B品牌的计算机更合算.17、(1)78.4(千克);(2)172480(元).【解析】

(1)根据平均数的计算可得这5只生猪的平均重量;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量,由(1)中的平均数可得.【详解】解:(1)这5只生猪的平均重量为千克;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量约为千克;

根据题意,生猪的价格为11元,

故这200只生猪能卖元.本题主要考查的是通过样本估计总体.统计的思想就是用样本的信息来估计总体的信息.18、正整数解是1,2,3,1.【解析】

先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.【详解】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,1.本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

根据韦达定理得,再代入原式求解即可.【详解】∵是一元二次方程的两实根∴∴故答案为:.本题考查了一元二次方程根与系数的问题,掌握韦达定理是解题的关键.20、1.【解析】

先利用直角三角形斜边中线性质求出AB,在Rt△ABF中,利用直角三角形10度角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】解:∵AF⊥BC,∴∠AFB=90°,在Rt△ABF中,D是AB的中点,DF=1,∴AB=2DF=6,又∵E是AC的中点,∴DE∥BC,∵∠ADE=10°,∴∠ABF=∠ADE=10°,∴AF=AB=1,故答案为:1.本题考查三角形中位线性质、含10度角的直角三角形性质、直角三角形斜边上的中线性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.21、-1【解析】

根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.【详解】由题意得:B点坐标为(0,),∴OB=,∵在直角三角形AOB中,点是线段的中点,∴OD=BD=AD,又∵为直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB为等腰直角三角形,∴OA=OB=,∴A点坐标为(,0),∴,解得k=-1.故答案为:-1.本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.22、【解析】

根据多边形的内角和公式,求出每个内角的度数,延长EF交直线l1

于点M,利用平行线的性质把∠1搬到∠3处,利用三角形的外角计算出结果【详解】延长EF交直线l1于点M,如图所示∵ABCDEF是正六边形∴∠AFE=∠A=120°∴∠MFA=60°∵11∥12∴∠1=∠3∵∠3=∠2+∠MFA∴∠1﹣∠2=∠MFA=60°故答案为:60°此题主要考查了平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.23、正五边形【解析】

本题考查一种正多边形的镶嵌应符合一个内角度数能整除.【详解】解:正三角形的每个内角是,能整除,能密铺;正方形的每个内角是,4个能密铺;正五边形每个内角是,不能整除,不能密铺;正六边形的每个内角是,能整除,能密铺.故答案为:正五边形.本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.二、解答题(本大题共3个小题,共30分)24、证明见解析.【解析】试题分析:先由平行四边形的性质得出AB=CD,AB∥DC,再得出∠F=∠E,CF=AE,∠DCA=∠CAB,即可推出△COF≌△AOE,从而得到结论.试题解析:∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠F=∠E,∠DCA=∠CAB,∵AB=CD,FD=BE,∴CF=AE,在△COF和△AOE中,∵∠F=∠E,CF=AE,∠DCA=∠CAB,∴△COF≌△AOE,∴∴OE=OF.考点:平行四边形的性质;全等三角形的判定与性质.25、(1);(2)S=t2﹣2t+8(0<t<2);(3).【解析】

由题意可得:由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,(1)判断出AQ=AP,得出2t=4-t,即可;(2)直接利用面积的和差即可得出结论;(3)先判断=,再得到,从而得出解方程即可得出结论.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,由运动知,DP=t,AQ=2t,∴AP=4﹣t,BQ=4﹣2t,(1)连接BD,如图1,∵AB=AD,∴∠ABD=∠ADB,∵PQ∥BD,∴∠ABD=∠AQP,∠APQ=∠ADB,∴∠APQ=∠AQP,∴AQ=AP,∴2t=4﹣t,∴t=;(2)S=S正方形ABCD﹣S△APQ﹣S△BCQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论