版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省滕州市第一中学高三第三次高考适应性考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中的系数之和为,则实数的值为()A. B. C. D.12.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.43.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.4.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.15.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.6.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.7.抛物线y2=ax(a>0)的准线与双曲线C:x28A.8 B.6 C.4 D.28.已知随机变量服从正态分布,且,则()A. B. C. D.9.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.10.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数11.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为()A. B. C. D.12.已知集合,集合,则A. B.或C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在边长为2的正三角形中,,则的取值范围为______.14.已知,记,则的展开式中各项系数和为__________.15.在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.16.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.19.(12分)棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取21根棉花纤维进行统计,结果如下表:(记纤维长度不低于311的为“长纤维”,其余为“短纤维”)纤维长度甲地(根数)34454乙地(根数)112116(1)由以上统计数据,填写下面列联表,并判断能否在犯错误概率不超过1.125的前提下认为“纤维长度与土壤环境有关系”.甲地乙地总计长纤维短纤维总计附:(1);(2)临界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)现从上述41根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为,求的分布列及数学期望.20.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.21.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.22.(10分)的内角的对边分别为,若(1)求角的大小(2)若,求的周长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.2.A【解析】
采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.3.C【解析】
根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.4.B【解析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.5.C【解析】令圆的半径为1,则,故选C.6.D【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.7.A【解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【详解】抛物线y2=ax(a>0)的准线为x=-a4,双曲线C:x28-y24【点睛】本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.8.C【解析】
根据在关于对称的区间上概率相等的性质求解.【详解】,,,.故选:C.【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.9.A【解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,,,,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.10.D【解析】
将复数整理为的形式,分别判断四个选项即可得到结果.【详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.11.D【解析】
取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,,,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.12.C【解析】
由可得,解得或,所以或,又,所以,故选C.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围.【详解】建立如图所示的平面直角坐标系,则,,,设,,,,根据,即,,,则,,即,,,则,,所以,,,,,,且,故,设,,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题.14.【解析】
根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.15.①③④【解析】
对于①中,当点与点重合,与点重合时,可判断①正确;当点点与点重合,与直线所成的角最小为,可判定②不正确;根据平面将四面体可分成两个底面均为平面,高之和为的棱锥,可判定③正确;四面体在上下两个底面和在四个侧面上的投影,均为定值,可判定④正确.【详解】对于①中,当点与点重合,与点重合时,,所以①正确;对于②中,当点点与点重合,与直线所成的角最小,此时两异面直线的夹角为,所以②不正确;对于③中,设平面两条对角线交点为,可得平面,平面将四面体可分成两个底面均为平面,高之和为的棱锥,所以四面体的体积一定是定值,所以③正确;对于④中,四面体在上下两个底面上的投影是对角线互相垂直且对角线长度均为1的四边形,其面积为定义,四面体在四个侧面上的投影,均为上底为,下底和高均为1的梯形,其面积为定值,故四面体在该正方体六个面上的正投影的面积的和为定值,所以④正确.故答案为:①③④.【点睛】本题主要考查了以空间几何体的结构特征为载体的谜题的真假判定及应用,其中解答中涉及到棱柱的集合特征,异面直线的关系和椎体的体积,以及投影的综合应用,着重考查了推理与论证能力,属于中档试题.16.130.15.【解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)存在,.【解析】
(1)根据抛物线的定义,容易知其轨迹为抛物线;结合已知点的坐标,即可求得方程;(2)由抛物线方程求得点的坐标,设出直线的方程,利用导数求得点的坐标,联立直线的方程和抛物线方程,结合韦达定理,求得,进而求得与之间的大小关系,即可求得参数.【详解】(1)由题意得,点与点的距离始终等于点到直线的距离,由抛物线的定义知圆心的轨迹是以点为焦点,直线为准线的抛物线,则,.∴圆心的轨迹方程为.(2)因为是轨迹上横坐标为2的点,由(1)不妨取,所以直线的斜率为1.因为,所以设直线的方程为,.由,得,则在点处的切线斜率为2,所以在点处的切线方程为.由得所以,所以.由消去得,由,得且.设,,则,.因为点,,在直线上,所以,,所以,所以.∴故存在,使得.【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中定值问题的求解,涉及导数的几何意义,属综合性中档题.18.(1);(2)【解析】
(1)根据正弦定理化简得到,故,得到答案.(2)计算,再利用面积公式计算得到答案.【详解】(1),则,即,故,,故.(2),故,故.当时等号成立.,故,,故△ABC面积的最大值为.【点睛】本题考查了正弦定理,面积公式,均值不等式,意在考查学生的综合应用能力.19.(1)在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(2)见解析【解析】试题分析:(1)可以根据所给表格填出列联表,利用列联表求出,结合所给数据,应用独立性检验知识可作出判断;(2)写出的所有可能取值,并求出对应的概率,可列出分布列并进一步求出的数学期望.试题解析:(Ⅰ)根据已知数据得到如下列联表:甲地乙地总计长纤维91625短纤维11415总计212141根据列联表中的数据,可得所以,在犯错误概率不超过的前提下认为“纤维长度与土壤环境有关系”.(Ⅱ)由表可知在8根中乙地“短纤维”的根数为,的可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 度废品收购站整治工作计划
- 2024年下半年初三班级班主任工作计划
- 关于开学工作计划范文
- 九年级上册历史教学工作计划
- 辽宁科技大学《诗词与人生》2023-2024学年第一学期期末试卷
- 辽东学院《造型基础》2021-2022学年第一学期期末试卷
- 丽江文化旅游学院《公共空间室内设计一》2023-2024学年第一学期期末试卷
- 兰州城市学院《实验心理学》2021-2022学年第一学期期末试卷
- 西藏拉萨人文介绍
- 缺血性肌挛缩的临床特征
- MSA测量系统分析手册
- 轻钢龙骨隔断墙施工合同协议书
- 2023年中国龙江森林工业集团招聘笔试题库及答案解析
- 外语类试卷国家公共英语(三级)笔试模拟试卷91
- LY/T 2389-2014轻型木结构建筑覆面板用定向刨花板
- 初一历史备课组会议纪录
- GB/T 8890-2015热交换器用铜合金无缝管
- GB/T 3488.2-2018硬质合金显微组织的金相测定第2部分:WC晶粒尺寸的测量
- 手术室护士入职培训手册
- 自动售货机控制系统设计终稿
- 提高公文写作能力课件
评论
0/150
提交评论