2025届内蒙古巴彦淖尔第一中学高二上数学期末联考试题含解析_第1页
2025届内蒙古巴彦淖尔第一中学高二上数学期末联考试题含解析_第2页
2025届内蒙古巴彦淖尔第一中学高二上数学期末联考试题含解析_第3页
2025届内蒙古巴彦淖尔第一中学高二上数学期末联考试题含解析_第4页
2025届内蒙古巴彦淖尔第一中学高二上数学期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届内蒙古巴彦淖尔第一中学高二上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在平行六面体中,AC与BD的交点为M,设,,,则下列向量中与相等的向量是()A. B.C. D.2.已知过点A(a,0)作曲线C:y=x•ex的切线有且仅有两条,则实数a的取值范围是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)3.已知命题,,则A., B.,C., D.,4.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④5.已知空间中三点,,,则下列结论中正确的有()A.平面ABC的一个法向量是 B.的一个单位向量的坐标是C. D.与是共线向量6.已知经过两点(5,m)和(m,8)的直线的斜率等于1,则m的值为()A.5 B.8C. D.77.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定8.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.29.圆的圆心和半径分别是()A. B.C. D.10.命题“,”的否定是A., B.,C., D.,11.已知双曲线的离心率为2,则()A.2 B.C. D.112.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________14.在空间直角坐标系中,经过且法向量的平面方程为,经过且方向向量的直线方程为阅读上面材料,并解决下列问题:给出平面的方程,经过点的直线的方程为,则直线l与平面所成角的余弦值为___________.15.已知数列满足,则其通项公式_______16.已知数列满足,,若,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.18.(12分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.19.(12分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.20.(12分)已知函数,其中为实数.(1)若函数的图像在处的切线与直线平行,求函数的解析式;(2)若,求在上的最大值和最小值.21.(12分)已知数列的前n项和为,当时,;数列中,.直线经过点(1)求数列的通项公式和;(2)设,求数列的前n项和,并求的最大整数n22.(10分)如图,在四棱锥中,侧面底面,是以为斜边的等腰直角三角形,,,,点E为的中点.(1)证明:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据向量加法和减法法则即可用、、表示出.【详解】故选:B.2、A【解析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为,整理得到方程有两个解即可,解出不等式即可.【详解】设切点为,,,则切线方程为:,切线过点代入得:,,即方程有两个解,则有或.故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.3、A【解析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案【详解】由题意,根据全称命题与特称命题的关系,可得命题,,则,,故选A【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题4、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B5、A【解析】根据已知条件,结合空间中平面法向量的定义,向量模长的求解,以及共线定理,对每个选项进行逐一分析,即可判断和选择.【详解】因为,,,故可得,因为,故,不平行,则D错误;对A:不妨记向量为,则,又,不平行,故向量是平面的法向量,则A正确;对B:因为向量的模长为,其不是单位向量,故B错误;对C:因为,故可得,故C错误;故选:A.6、C【解析】根据斜率的公式直接求解即可.【详解】由题可知,,解得.故选:C【点睛】本题主要考查了两点间斜率的计算公式,属于基础题.7、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C8、C【解析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.9、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.10、C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.11、D【解析】由双曲线的性质,直接表示离心率,求.【详解】由双曲线方程可知,因为,所以,解得:,又,所以.故选:D【点睛】本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题能力,属于中档题型,一般求双曲线离心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.构造法:根据条件,可构造出的齐次方程,通过等式两边同时除以,进而得到关于的方程.12、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算14、##【解析】根据材料结合已知条件求得平面的法向量以及直线的方向向量,即可用向量法求得线面角.【详解】因为平面的方程,不妨令,则,故其过点,设其法向量为,根据题意则,即,又平面的方程为,则,不妨取,则,则平面的法向量;经过点的直线的方程为,不妨取,则,则该直线过点,则直线的方向向量.设直线与平面所成的角为,则.又,故,即直线l与平面所成角的余弦值为.故答案为:.15、【解析】构造法可得,由等比数列的定义写出的通项公式,进而可得.【详解】令,则,又,∴,故,而,∴是公比为,首项为,则,∴.故答案为:.16、【解析】由递推式,结合依次求出、即可.【详解】由,可得:,又,可得:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例函数模型拟合效果更好,然后将代入回归方程中可求结果(3)利用已知数据求出样本标准差s,从而可得非原料成本y服从正态分布,再计算,然后各个数据是否在此范围内,从而可得结论【小问1详解】令,则可转化为,因为,所以,所以,所以,所以y关于x的回归方程为【小问2详解】与的相关系数为因为,所以用反比例函数模型拟合效果更好,把代入回归方程得(元),所以产量为10千件时每件产品的非原料成本约为11元【小问3详解】因为,所以,因为样本标准差为,所以,所以非原料成本y服从正态分布,所以因为在之外,所以需要此非原料成本数据寻找出现异样成本的原因18、(1);(2)【解析】(1)首先将命题,化简,然后由为真可得,均为真,取交集即可求出实数的取值范围;(2)将是的充分不必要条件转化为是的必要不充分条件,进而将问题转化为,从而求出实数的取值范围【详解】(1)若命题为真,则,解得,当时,命题,若命题为真,则,解得,所以,因为为真,所以,均为真,所以,所以,所以实数的取值范围为(2)因为是的充分不必要条件,所以是的必要不充分条件,所以,所以或,所以,所以实数的取值范围是【点睛】本题主要考查根据真值表判断复合命题中的单个命题的真假,根据充分不必要条件求参数的取值范围,同时考查一元二次不等式的解法,分式不等式的解法.第(2)问关键是将问题等价转化为两个集合间的真包含关系19、(Ⅰ)单调递减区间为;(Ⅱ).【解析】(Ⅰ)求函数的导函数,求的区间即为所求减区间;(Ⅱ)化简不等式,变形为,即求,令,求的导函数判断的单调性求出最小值,可求出的范围.【详解】(Ⅰ)由题可知.令,得,从而,∴的单调递减区间为.(Ⅱ)由可得,即当时,恒成立.设,则.令,则当时,.∴当时,单调递增,,则当时,,单调递减;当时,,单调递增.∴,∴.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为或,转化为求函数的最值求出的范围.20、(1)(2),【解析】(1)根据平行关系得到切线斜率,进而得到导函数在处的函数值,列出方程,求出,进而得到函数解析式;(2)先由求出,再利用导函数求单调性和最值.【小问1详解】,.由题意得:,解得:.,【小问2详解】,则,解得,,,当,解得:,即函数在单调递减,当,解得:或,即函数分别在,递增.又,,,,,.21、(1),(2),7【解析】(1)根据之间的递推关系,可写出。,采用和相减得方法,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论