2025届安徽省舒城龙河中学高二数学第一学期期末教学质量检测试题含解析_第1页
2025届安徽省舒城龙河中学高二数学第一学期期末教学质量检测试题含解析_第2页
2025届安徽省舒城龙河中学高二数学第一学期期末教学质量检测试题含解析_第3页
2025届安徽省舒城龙河中学高二数学第一学期期末教学质量检测试题含解析_第4页
2025届安徽省舒城龙河中学高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省舒城龙河中学高二数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在下列四条抛物线中,焦点到准线的距离为1的是()A. B.C. D.2.椭圆离心率是()A. B.C. D.3.已知过抛物线焦点的直线交抛物线于,两点,则的最小值为()A. B.2C. D.34.命题“”的一个充要条件是()A. B.C. D.5.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.6.若直线与直线垂直,则()A.6 B.4C. D.7.若实数x,y满足不等式组,则的最小值为()A. B.0C. D.28.已知函数在处有极小值,则c的值为()A.2 B.4C.6 D.2或69.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.1410.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.2111.等比数列的前项和为,若,则()A. B.8C.1或 D.或12.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.16二、填空题:本题共4小题,每小题5分,共20分。13.平面内n条直线两两相交,且任意三条直线不过同一点,将其交点个数记为,若规定,则,,_________,_________,(用含n的式子表示)14.已知直线和互相平行,则实数的值为___________.15.有一组数据,其平均数为3,方差为2,则新的数据的方差为________.16.若直线与圆有公共点,则b的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.18.(12分)立德中学举行冬令营活动期间,对位参加活动的学生进行了文化和体能测试,满分为150分,其测试成绩都在90分和150分之间,成绩在认定为“一般”,成绩在认定为“良好”,成绩在认定为“优秀”.成绩统计人数如下表:体能文化一般良好优秀一般0良好3优秀2例如,表中体能成绩良好且文化成绩一般的学生有2人(1)若从这位参加测试的学生中随机抽取一位,抽到文化或体能优秀的学生概率为.求,的值;(2)在(1)的情况下,从体能成绩优秀的学生中,随机抽取2人,求至少有一个人文化的成绩为优秀的概率;(3)若让使参加体能测试的成绩方差最小,写出的值.(直接写出答案)19.(12分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.20.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.21.(12分)在平面直角坐标系中,△的三个顶点分别是点.(1)求△的外接圆O的标准方程;(2)过点作直线平行于直线,判断直线与圆O的位置关系,并说明理由.22.(10分)设圆的圆心为﹐直线l过点且与x轴不重合,直线l交圆于A,B两点.过作的平行线交于点P.(1)求点P的轨迹方程;(2)设点P的轨迹为曲线E,直线l交E于M,N两点,C在线段上运动,原点O关于C的对称点为Q,求四边形面积的取值范围;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意可知,然后分析判断即可【详解】由题意知,即可满足题意,故A,B,C错误,D正确.故选:D2、C【解析】将方程转化为椭圆的标准方程,求得a,c,再由离心率公式求得答案.【详解】解:由得,所以,则,所以椭圆的离心率,故选:C.3、D【解析】设出直线方程,联立抛物线方程,得到韦达定理,求得,利用抛物线定义,将目标式转化为关于的代数式,消元后,利用基本不等式即可求得结果.【详解】因为抛物线的焦点的坐标为,显然要满足题意,直线的斜率存在,设直线的方程为联立可得,其,设坐标为,显然,则,,根据抛物线定义,MF=故=4+4令,故4+4当且仅当,即时取得最小值.故选:D.【点睛】本题考察抛物线中的最值问题,涉及到韦达定理的使用,基本不等式的使用;其中利用的关系,以及抛物线的定义转化目标式,是解决问题的关键.4、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D5、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.6、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.7、A【解析】画出可行域,令,则,结合图形求出最小值,即可得解;【详解】解:画出不等式组,表示的平面区域如图阴影部分所示,由,解得,即,令,则.结合图形可知当过点时,取得最小值,且,即故选:A8、A【解析】根据求出c,进而得到函数的单调性,然后根据极小值的定义判断答案.【详解】由题意,,则,所以或.若c=2,则,时,,单调递增,时,,单调递减,时,,单调递增.函数在处有极小值,满足题意;若c=6,则,函数R上单调递增,不合题意.综上:c=2.故选:A.9、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.10、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A11、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.12、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.6;②..【解析】利用第条直线与前条直线相交有个交点得出与的关系后可得结论【详解】第4条直线与前三条直线有3个交点,因此,同理,由此得到第条直线与前条直线相交有个交点,所以,即所以故答案为:6;14、【解析】根据直线平行的充要条件即可求出实数的值.详解】由直线和互相平行,得,即.故答案为:.15、2【解析】由已知得,,然后计算的平均数和方差可得答案.【详解】由已知得,,所以,.故答案为:2.16、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平面AEC,理由见解析(2)证明见解析【解析】(1)以线面平行的判定定理去证明直线与平面平行即可;(2)以线面垂直的判定定理去证明直线面即可.【小问1详解】连接BD,设,连接OE.在中,O、E分别是BD、的中点,则.因为直线OE在平面AEC上,而直线不在平面AEC上,根据直线与平面平行的判定定理,得到直线平面AEC.【小问2详解】正方体中,故,又,故同理故,又,故又根据直线与平面垂直的判定定理,得直线平面.18、(1),;(2);(3).【解析】(1)由题设可得求参数a,结合表格数据及已知总学生人数求参数b.(2)应用列举法求古典概型的概率.(3)应用表格数据及方差公式可得且,即可确定成绩方差最小对应的值.【小问1详解】设事件:从位学生中随机抽取一位,抽到文化或体能优秀的学生由题意知,体能或文化优秀的学生共有人,则,解得所以;【小问2详解】体能成绩为优秀的学生共有5人,在这5人中,文化成绩一般的人记为;文化成绩良好的人记为;文化成绩优秀的人记为从文化成绩优秀的学生中,随机抽取2人的样本空间,设事件:至少有一个人文化的成绩为优秀,,所以,体能成绩优秀的学生中,随机抽取2人,至少有一个人文化成绩为优秀的概率是;【小问3详解】由题设知:体能测试成绩,{一般,良好,优秀}人数分别为{5,,},对应平均分为{100,120,140},所以体能测试平均成绩,所以,而所以当时最小.19、(1),是奇函数(2)【解析】(1)由求出,进而求得的解析式,利用奇偶函数的定义判断函数的奇偶性即可;(2)根据幂函数的单调性可得函数的单调性,求出函数的最小值,将不等式恒成立转化为对任意使得恒成立即可.【小问1详解】因为,所以,所以.所以.的定义城为,且,所以是奇函数.【小问2详解】因为,在上均为增函数,所以在上增函数,所以.对任意,不等式恒成立,则,所以,即实数a的取值范固为.20、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求解;2、对于过定点的直线,也可以通过定点在椭圆的内部或在椭圆上,判定直线与椭圆的位置关系.21、(1);(2)直线与圆O相切,理由见解析.【解析】(1)法1:设外接圆为,由点在圆上,将其代入方程求参数,即可得圆的方程;法2:利用斜率的两点式易得,则是△外接圆的直径,进而求圆心坐标、半径,即可得圆的标准方程.(2)由题设有直线垂直于x轴,根据直线平行于直线及所过的点写出直线l的方程,求圆O的圆心与直线距离,并与半径比大小,即可确定它们的位置关系.【小问1详解】法1:设过三点的圆的方程为,则,解得,所求圆的方程为,即.法2:因,所以,则是△外接圆的直径,圆心,所以所求圆的方程为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论