版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省滁州市重点初中数学高二上期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题P:,,则命题P的否定为()A., B.,C., D.,2.以原点为对称中心的椭圆焦点分别在轴,轴,离心率分别为,直线交所得的弦中点分别为,,若,,则直线的斜率为()A. B.C. D.3.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A.90 B.75C.60 D.454.等比数列的前项和为,若,则()A. B.8C.1或 D.或5.内角A,B,C的对边分别为a,b,c.若,则一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形6.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.7.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.抛物线的准线方程是,则实数的值为()A. B.C.8 D.9.在空间直角坐标系中,若,,则()A. B.C. D.10.已知:,:,若是的充分不必要条件,则实数的取值范围是()A. B.C. D.11.函数的定义域是,,对任意,,则不等式的解集为()A. B.C.或 D.或12.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元二、填空题:本题共4小题,每小题5分,共20分。13.已知,分别是椭圆和双曲线的离心率,,是它们的公共焦点,M是它们的一个公共点,且,则的最大值为______14.已知抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,则p=__15.函数定义域为___________.16.若椭圆W:的离心率是,则m=___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,,,且,其中为常数(1)证明:;(2)是否存在,使得为等差数列?并说明理由18.(12分)求适合下列条件的椭圆的标准方程:(1)经过点,;(2)长轴长是短轴长的3倍,且经过点19.(12分)已知函数.(1)证明:;(2)若函数有两个零点,求实数的取值范围.20.(12分)如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.21.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.22.(10分)已知点A(,0),点C为圆B:(B为圆心)上一动点,线段AC的垂直平分线与直线BC交于点G(1)设点G的轨迹为曲线T,求曲线T的方程;(2)若过点P(m,0)()作圆O:的一条切线l交(1)中的曲线T于M、N两点,求△MNO面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据特称命题的否定变换形式即可得出结果【详解】命题:,,则命题的否定为,故选:B2、A【解析】分类讨论直线的斜率存在与不存在两种情况,联立直线与曲线方程,再根据,求解.【详解】设椭圆的方程分别为,,由可知,直线的斜率一定存在,故设直线的方程为.联立得,故,;联立得,则,.因为,所以,所以.又,所以,所以,所以,.故选:A.【点睛】此题利用设而不求的方法,找出、、、之间的关系,化简即可得到的值.此题的难点在于计算量较大,且容易计算出错.3、A【解析】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.考点:频率分布直方图.4、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.5、C【解析】利用余弦定理角化边整理可得.【详解】由余弦定理有,整理得,故一定是直角三角形.故选:C6、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).7、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B8、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.9、B【解析】直接利用空间向量的坐标运算求解.【详解】解:因为,,所以.故选:B10、C【解析】由是的充分不必要条件,则是的充分不必要条件,再根据对应集合的包含关系可得答案.【详解】由,即,设,由是的充分不必要条件,则是的充分不必要条件所以,则故选:C11、A【解析】构造函数,结合已知条件可得恒成立,可得为上的减函数,再由,从而将不等式转换为,根据单调性即可求解.【详解】构造函数,因为,所以为上的增函数又因为,所以原不等式转化为,即,解得.所以原不等式的解集为,故选:A.12、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用椭圆、双曲线的定义以及余弦定理找到的关系,然后利用三角换元求最值即可.【详解】解析:设椭圆的长半轴为a,双曲线的实半轴为,半焦距为c,设,,,因为,所以由余弦定理可得,①在椭圆中,,①化简为,即,②在双曲线中,,①化简为,即,③联立②③得,,即,记,,,则,当且仅当,即,时取等号故答案为:.14、2【解析】根据已知条件,结合抛物线的定义,即可求解【详解】解:∵抛物线C:y2=2px(p>0)上的点P(1,y0)(y0>0)到焦点的距离为2,∴由抛物线的定义可得,,解得p=2故答案为:215、【解析】根据函数定义域的求法,即可求解.【详解】解:,解得,故函数的定义域为:.故答案为:.16、或【解析】按照椭圆的焦点在轴和在轴上两种情况分别求解,可得所求结果【详解】①当椭圆的焦点在轴上时,则有,由题意得,解得②当椭圆的焦点在轴上时,则有,由题意得,解得综上可得或故答案为或【点睛】解答本题的关键有两个:一个是注意分类讨论思想方法的运用,注意椭圆焦点所在的位置;二是解题时要分清椭圆方程中各个参数的几何意义,然后再根据离心率的定义求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在;理由见解析【解析】(1)由得两式相减可得答案;(2)利用得,可得,是首项为1,公差为4的等差数列,是首项为3,公差为4的等差数列,因此存在【小问1详解】由题设,,,两式相减得,,由于,所以【小问2详解】由题设,,,可得,由(1)知,.令,解得,故,由此可得,是首项为1,公差为4的等差数列,;又,同理,是首项为3,公差为4的等差数列,所以,所以.因此存在,使得为等差数列18、(1);(2)或.【解析】(1)由已知可得,,且焦点在轴上,进而可得椭圆的标准方程;(2)由已知可得,,此时焦点在轴上,或,,此时焦点在轴上,进而可得椭圆的标准方程;【小问1详解】解:椭圆经过点,,,,,且焦点在轴上,椭圆的标准方程为.【小问2详解】解:长轴长是短轴长的3倍,且经过点,当点在长轴上时,,,此时焦点在轴上,此时椭圆的标准方程为;当点在短轴上时,,,此时焦点在轴上,此时椭圆的标准方程.综合得椭圆的方程为或.19、(1)证明见解析;(2).【解析】(1)令,求导得到函数的增区间为,减区间为,故,得到证明.(2),讨论和两种情况,计算函数的单调区间得到,解得答案.【详解】(1)令,有,令可得,故函数的增区间为,减区间为,,故有.(2)由①当时,,此时函数的减区间为,没有增区间;②当时,令可得,此时函数的增区间为,减区间为.若函数有两个零点,必须且,可得,此时,又由,当时,由(1)有,取时,显然有,当时,故函数有两个零点时,实数的取值范围为.【点睛】本题考查了利用导数证明不等式,根据零点求参数,意在考查学生的计算能力和应用能力.20、(1)证明见解析(2)【解析】(1)如图,以为轴,为轴,为轴建立空间直角坐标系,利用空间向量法分别求出和,再证明即可;(2)利用空间向量的数量积求出平面的法向量,结合求点到面距离的向量法即可得出结果.【小问1详解】证明:如图,以为轴,为轴,为轴,建立空间直角坐标系,则,,,,所以,,所以,故,所以;【小问2详解】当时,,,,,则,,,设是平面的法向量,则由,解得,取,得,设点A到平面的距离为,则,所以点A到平面的距离为.21、(1).(2)证明见解析.【解析】(1)由已知得,设圆分别切轴于点,过点作,垂足为.在从而有得,由等比数列的定义得数列是以为首项,为公比的等比数列.由此求得答案;(2)由(1)得再由圆的面积公式和等比数列求和公式计算可得证.【小问1详解】解:直线的倾斜角为则圆心在直线上,,设圆分别切轴于点,过点作,垂足为.在中,所以即化简得,变形得,所以是以为首项,为公比的等比数列.,.【小问2详解】解:由(1)得所以,所以.22、(1)(2)1【解析】(1)可由题意,点G在线段AC的垂直平分线上,,可利用椭圆的定义,得到点G的轨迹为椭圆,然后利用已知的长度关系求解出椭圆方程;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 松花粉膳食补充剂相关项目实施方案
- 各个班组安全培训试题B卷附答案
- 斜口虎钳手工具项目可行性实施报告
- 电子课程设计家用风扇
- 机械cadcam底板课程设计
- 深基坑课程设计体会
- 电子课程设计电子秤
- 2024年物流机器人项目立项申请报告模范
- 2024年悬挂式离子风机项目规划申请报告模范
- 合理运用电教媒体优化数学课堂教学
- 涂料涂饰施工质量验收评定表
- 学校食堂内部控制管理制度
- DB32-T 3904-2020电动自行车停放充电场所消防技术规范doc-(高清现行)
- 高等植物生理学植物光形态建成经典
- 卫生系列评审高级专业技术资格答辩题解(神经外科)
- 蓝色卡通班会教学培训PPT模板课件
- 常德自来水公司水表管理制度
- 住宅小区室外道路及管网配套工程施工方案
- 二氧化碳气体保护焊安全技术
- 淘宝物流红章证明模板
- AHP层次分析法-EXCEL表格自动计算
评论
0/150
提交评论