版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏回族自治区吴忠市2025届高一上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定2.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限3.若,,,,则()A. B.C. D.4.命题“”的否定是:()A. B.C. D.5.已知集合,则=A. B.C. D.6.已知函数的图象的对称轴为直线,则()A. B.C. D.7.函数的部分图象如图所示,则函数的解析式为()A. B.C. D.8.已知函数是定义在上的偶函数,当时,,则A. B.C. D.9.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.10.在中,,,则的值为A. B.C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,直线与平面所成角的正弦值为________12.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.13.若,则的值为______14.函数在一个周期内的图象如图所示,此函数的解析式为_______________15.函数的值域是__________.16.已知幂函数在上是增函数,则实数m的值是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.命题p:方程x2+x+m=0有两个负数根;命题q:任意实数x∈R,mx2-2mx+1>0成立;若p与q都是真命题,求m取值范围.18.已知为锐角,,(1)求和的值;(2)求和的值19.如图,在矩形ABCD中,边AB所在的直线方程的斜率为2,点C(2,0).求直线BC的方程20.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:;条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分21.设集合,,(1),求;(2)若“”是“”的充分条件,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A2、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.3、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.4、A【解析】由特称命题的否定是全称命题,可得出答案.【详解】根据特称命题的否定是全称命题,可知命题“”的否定是“”.故选:A.5、B【解析】由题意,所以.故选B考点:集合的运算6、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.7、B【解析】由图像求出周期再根据可得,再由,代入可求,进而可求出解析式.【详解】由图象可知,,得,又∵,∴.当时,,即,解得.又,则,∴函数的解析式为.故选:B.【点睛】本题主要考查了由三角函数的图像求函数解析式,需熟记正弦型三角函数的周期公式,属于基础题.8、D【解析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值【详解】因为是定义在上的偶函数,且当时,,所以,选择D【点睛】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解9、B【解析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.10、A【解析】如图,,又,∴,故.选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.12、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.13、0【解析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为014、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,又,,三角函数的解析式是.故答案为:.15、【解析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:16、1【解析】因为幂函数在上是增函数,所以,解得,又因为,所以.故填1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】根据判别式以及韦达定理即可求解.【详解】对于有两个负数根(可以为重根),即,并且由韦达定理,∴;对于恒成立,当时,符合题意;当时,则必定有且,得,所以;若p与q都是真命题,则.18、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以19、x+2y﹣2=0【解析】由矩形可知相邻两边垂直,可求出直线斜率,代入点,可求方程【详解】∵四边形ABCD为矩形,∴AB⊥BC,∴kAB•kBC=﹣1∴,∴直线BC的方程为,即x+2y﹣2=0【点睛】本题考查直线垂直,和点斜式直线方程,属于基础题20、(1),(2)答案不唯一,具体见解析【解析】(1)根据正弦函数的单调增区间建立不等式求解即可得出;(2)选①代入,化简,令,转化为二次函数求值域即可,选择条件②代入化简,令,根据正弦函数的图象与性质求最值即可求解.【小问1详解】函数的单调增区间为()由,,解得,,所以的单调增区间为,【小问2详解】选择条件①:令,因为,所以所以所以,因为在区间上单调递增,所以当时,取得最大值所以当时,取得最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校传染病的预防、控制与管理课件
- 2024-2025学年专题7.1 力-八年级物理人教版(下册)含答案
- 2024届上海市嘉定区市级名校高三4月调研测试数学试题
- 第3章 与圆有关的计算 浙教版数学九年级上册精讲精练
- 体育与健康必修背越式跳高说课稿
- 5年中考3年模拟试卷初中道德与法治七年级下册02专项素养综合全练(二)
- 上海中医骨伤科模拟题2021年(15)-真题-无答案
- 小学四年级下册音乐教案苏少版
- 机场危险货物装卸合同样本
- 天津户外广告牌装修合同
- 2023年4月自考00540外国文学史试题及答案含评分标准
- GB/T 17639-2023土工合成材料长丝纺粘针刺非织造土工布
- 苏教版四年级数学上册除法竖式计算
- 140t-h干熄焦初步设计总论
- 感悟“站起来”【备课精讲精研精思】统编版高中语文选择性必修上册
- MBTI 英文介绍课件
- 内蒙某特色产业直播基地项目计划书农特产品直播基地打造计划书网红经济电商直播基地商业计划书
- 2023年应急抢险救灾工程管理办法
- 战狼Ⅱ课件完整版
- 常见电泳漆弊病与解决方法
- 2023年国际生物奥林匹克竞赛国际生物奥林匹克
评论
0/150
提交评论