版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省会泽县第一中学2025届高二数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的两个焦点为,点是上的一点,且,则双曲线的渐近线与轴的夹角的取值范围是()A. B.C. D.2.若数列满足,则()A.2 B.6C.12 D.203.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.4.方程表示的曲线是A.两条直线 B.两条射线C.两条线段 D.一条直线和一条射线5.若a,b,c为实数,且,则以下不等式成立的是()A. B.C. D.6.函数,则曲线在点处的切线方程为()A. B.C. D.7.已知函数,为的导数,则()A.-1 B.1C. D.8.已知是等比数列,,,则()A. B.C. D.9.已知,,,则的大小关系是()A. B.C. D.10.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.11.直线且的倾斜角为()A. B.C. D.12.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列满足,,公比,则的前2021项和______14.已知水平放置的是按“斜二测画法”得到如下图所示的直观图,其中,,则原的面积为______.15.已知直线与平行,则实数的值为_____________.16.等差数列的公差,是其前n项和,给出下列命题:若,且,则和都是中的最大项;给定n,对于一些,都有;存在使和同号;.其中正确命题的序号为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,且,,数列满足:,,,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)若不等式对任意恒成立,求实数k的取值范围18.(12分)数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和19.(12分)已知点在椭圆:上,椭圆E的离心率为.(1)求椭圆E的方程;(2)若不平行于坐标轴且不过原点O的直线l与椭圆E交于B,C两点,判断是否可能为等边三角形,并说明理由.20.(12分)已知椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若斜率为1的直线与椭圆交于不同的两点,,求的最大值.21.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.22.(10分)已知椭圆经过点,且离心率为(1)求椭圆C的标准方程;(2)已知点A,B是椭圆C的上,下顶点,点P是直线上的动点,直线PA与椭圆C的另一交点为E,直线PB与椭圆C的另一交点为F.证明:直线EF过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由条件结合双曲线的定义可得,然后可得,然后可求出的范围即可.【详解】由双曲线的定义可得,结合可得当点不为双曲线的顶点时,可得,即当点为双曲线的顶点时,可得,即所以,所以,所以所以双曲线的渐近线与轴的夹角的取值范围是故选:B2、D【解析】由已知条件变形可得,然后累乘法可得,即可求出详解】由得,,.故选:D3、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.4、D【解析】由,得2x+3y−1=0或.即2x+3y−1=0(x⩾3)为一条射线,或x=4为一条直线.∴方程表示的曲线是一条直线和一条射线.故选D.点睛:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线在求解方程时要注意变量范围.5、C【解析】利用不等式的性质直接推导和取值验证相结合可解.【详解】取可排除ABD;由不等式的性质易得C正确.故选:C6、D【解析】对函数求导,利用导数的几何意义求出切线斜率即可计算作答.【详解】依题意,,即有,而,则过点,斜率为1的直线方程为:,所以曲线在点处切线方程为.故选:D7、B【解析】由导数的乘法法则救是导函数后可得结论【详解】解:由题意,,所以.故选:B8、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D9、B【解析】利用微积分基本定理计算,利用积分的几何意义求扇形面积得到,然后比较大小.【详解】,表示以原点为圆心,半径为2的圆在第二象限的部分的面积,∴;,∵e=2.71828…>2.7,,,,故选:10、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B11、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.12、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列的求和公式求解即可.【详解】因为等比数列满足,,公比,所以,故答案为:14、【解析】根据直观图画出原图,再根据三角形面积公式计算可得.【详解】解:依题意得到直观图的原图如下:且,所以故答案为:【点睛】本题考查斜二测画法中原图和直观图面积之间的关系,属于基础题15、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或16、【解析】对,根据数列的单调性和可判断;对和,利用等差数列的通项公式可直接推导;对,利用等差数列的前项和可直接推导.【详解】不妨设等差数列的首项为对,,可得:,解得:,即又,则是递减的,则中的前5项均为正数,所以和都是中的最大项,故正确;对,,故有:,故正确;对,,又,则,说明不存在使和同号,故错误;对,有:故并不是恒成立的,故错误故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3).【解析】(1)由可得数列是等比数列,即可求得,由得数列是等差数列,即可求得.(2)由(1)可得,再利用错位相减法求和即得.(3)将问题等价转化为对任意恒成立,构造数列并判断其单调性,即可求解作答.【小问1详解】数列的前项和为,,,当时,,则,而当时,,即得,因此,数列是以1为首项,3为公比的等比数列,则,数列中,,,则数列是等差数列,而,,即有公差,则,所以数列,的通项公式分别是:,.【小问2详解】由(1)知,,则,则有,两式相减得:,从而得,所以数列的前n项和.【小问3详解】由(1)知,,依题意得对任意恒成立,设,则,当,,为单调递减数列,当,,为单调递增数列,显然有,则当时,取得最大值,即最大值是,因此,,所以实数k取值范围是.【点睛】思路点睛:一般地,如果数列是等差数列,是等比数列,求数列的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列的公比,然后作差求解18、(1)证明见解析,;(2).【解析】(1)利用给定的递推公式变形,再利用等比数列定义直接判断并求出通项得解.(2)由(1)的结论求出,再利用裂项相消法计算作答.【小问1详解】数列{}中,,则,由得:,所以数列是首项为3,公比为2的等比数列,则有,即,所以数列{}的通项公式是.【小问2详解】由(1)知,,,则,所以数列{}的前n项和.19、(1)(2)三角形不可能是等边三角形,理由见解析【解析】(1)根据点坐标和离心率可得椭圆方程;(2)假设为等边三角形,设,与椭圆方程联立,由韦达定理得的中点的坐标,,利用得出矛盾.小问1详解】由点在椭圆上,得,即,又,即,解得,所以椭圆的方程为.【小问2详解】假设为等边三角形,设,,联立,消去得,由韦达定理得,由得,故,所以的中点为,所以,故,与等边三角形中矛盾,所以假设不成立,故三角形不可能是等边三角形.20、(1);(2).【解析】(1)由题设可得且,结合椭圆参数关系求,即可得椭圆的方程;(2)设直线为,联立抛物线整理成一元二次方程的形式,由求m的范围,再应用韦达定理及弦长公式求关于m的表达式,根据二次函数性质求最值即可.小问1详解】由题设,且,故,,则,所以椭圆的方程为.【小问2详解】设直线为,联立椭圆并整理得:,所以,可得,且,,所以且,故当时,.21、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC22、(1);(2)证明见解析.【解析】(1)根据题意,列出的方程组,通过解方程组,即可求出答案.(2)法一:设,,;当时,根据点的坐标写出直线PA的方程,与椭圆方程联立,可求出点的坐标;同理可求出点的坐标,然后即可求出直线EF的方程,从而证明直线EF过定点.法二:首先根据时直线EF的方程为,可判断出直线EF过的定点M必在y轴上,设为;然后同方法一,求出点,的坐标,根据,即可求出的值.【小问1详解】由题意,知,解得,所以椭圆C的标准方程为【小问2详解】法一:设,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药物器械采购合同模板
- 转让合同模板广告
- 2024年第二次宜宾市事业单位高频难、易错点500题模拟试题附带答案详解
- 2024年秋季福建省长汀县事业单位招聘92人历年高频难、易错点500题模拟试题附带答案详解
- 2024年福建龙岩市连城县事业单位招聘69人历年高频难、易错点500题模拟试题附带答案详解
- 2024年福建莆田市卫健委直属医疗卫生单位招聘93人历年高频难、易错点500题模拟试题附带答案详解
- 2024年福建福州市鼓楼区东街街道招聘基层党建办工作人员1人高频难、易错点500题模拟试题附带答案详解
- 2024年福建福州市仓山区市场监督管理局招聘1人历年高频难、易错点500题模拟试题附带答案详解
- 2024年福建省龙岩市行政服务中心招聘3人历年高频难、易错点500题模拟试题附带答案详解
- 2024年福建省龙岩市新罗区岩山镇招聘3人历年高频难、易错点500题模拟试题附带答案详解
- 昆明地铁5号线 施工方案
- 创新方法教程题库题库(449道)
- 因疫情原因征信不良申请书范本
- 1.5基尔霍夫定律
- 北师大版八年级数学上册 (一次函数的应用)一次函数教育教学课件(第2课时)
- 新教科版四年级上册科学 2-8 食物在身体里的旅行 教学课件
- 架空线路清障施工方案
- 国际体力活动量表IPAQ中文版短卷及评分标准(完整资料)
- 2023国家公务员考试真题及答案
- 机器设备评估常用数据与参数
- 糖尿病饮食指导健康讲解课件
评论
0/150
提交评论