版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省上虞市春晖中学数学高一上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.2.函数且的图象恒过定点()A.(-2,0) B.(-1,0)C.(0,-1) D.(-1,-2)3.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.4.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则5.已知,则()A. B.C. D.6.若是的重心,且(,为实数),则()A. B.1C. D.7.已知全集U=R,集合,,则集合()A. B.C. D.8.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.9.下列关系中,正确的是()A. B.C D.10.直线的倾斜角是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若正数,满足,则________.12.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),以筒车转轮的中心为原点,过点的水平直线为轴建立如图直角坐标系.已知一个半径为1.6m的筒车按逆时针方向每30s匀速旋转一周,到水面的距离为0.8m.规定:盛水筒对应的点从水中浮现(时的位置)时开始计算时间,且设盛水筒从点运动到点时所经过的时间为(单位:s),且此时点距离水面的高度为(单位:m)(在水面下则为负数),则关于的函数关系式为___________,在水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为___________s.13.若函数满足,则______14.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________15.“”是“”的______条件(请从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选择一个填)16.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线,直线经过点,且(1)求直线的方程;(2)记与轴相交于点,与轴相交于点,与相交于点,求的面积18.已知.(1)求函数的最小正周期及在区间的最大值;(2)若,求的值.19.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.20.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.21.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础2、A【解析】根据指数函数的图象恒过定点,即求得的图象所过的定点,得到答案【详解】由题意,函数且,令,解得,,的图象过定点故选:A3、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理4、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.5、C【解析】因为,所以;因为,,所以,所以.选C6、A【解析】若与边的交点为,再由三角形中线的向量表示即可.【详解】若与边交点为,则为边上的中线,所以,又因为,所以故选:A【点睛】此题为基础题,考查向量的线性运算.7、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.8、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.9、B【解析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B10、B【解析】,斜率为,故倾斜角为.二、填空题:本大题共6小题,每小题5分,共30分。11、108【解析】设,反解,结合指数运算和对数运算,即可求得结果.【详解】可设,则,,;所以.故答案为:108.12、①.②.10【解析】根据给定信息,求出以Ox为始边,OP为终边的角,求出点P的纵坐标即可列出函数关系,再解不等式作答.【详解】依题意,点到x轴距离为0.8m,而,则,从点经s运动到点所转过的角为,因此,以Ox为始边,OP为终边的角为,点P的纵坐标为,于是得点距离水面的高度,由得:,而,即,解得,对于k的每个取值,,所以关于的函数关系式为,水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为10s.故答案为:;10【点睛】关键点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x轴非负半轴.13、【解析】根据题意,令,结合指数幂的运算,即可求解.【详解】由题意,函数满足,令,可得.故答案为:.14、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.15、必要不充分【解析】根据充分条件、必要条件的定义结合余弦函数的性质可得答案.【详解】当时,可得由,不能得到例如:取时,,也满足所以由,可得成立,反之不成立“”是“”的必要不充分条件故答案为:必要不充分16、【解析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据两条直线垂直的斜率关系可得直线的斜率,代入求得截距,即可求得直线的方程.(2)根据题意分别求得的坐标,可得的长,由的纵坐标即可求得的面积【详解】(1)由题意,则两条直线的斜率之积为即直线的斜率为因为,所以可设将代入上式,解得即(2)在直线中,令,得,即在直线:中,令,得,即解方程组,得,,即则底边的长为,边上的高为故【点睛】本题考查了直线与直线垂直的斜率关系,直线与轴交点坐标,直线的交点坐标求法,属于基础题.18、(1)1;(2)【解析】(1)化简得f(x)=sin(2x),求出函数的最小正周期以及最大值;(2)由(1)知,,考虑x0的取值范围求出cos(2x0)的值,求出的值【详解】解:(1)∴,∴函数的最小正周期为T=π;∵
,故
单调增,单调减∴
所以
在区间的最大值是1.(2)∵,,∴,又所以,故【点睛】本题考查了三角函数的求值问题以及三角函数的图象与性质的应用问题,解题时应细心作答,以免出错,是基础题19、(1)(2)【解析】(1)求得集合,根据集合的交集、并集和补集的运算,即可求解;(2)由,所以,结合集合的包含关系,即可求解.【详解】(1)由题意,集合,因为集合,则,所以,.(2)由题意,因为,所以,又因为,,所以,即实数的取值范围为.【点睛】本题主要考查了集合的交集、并集和补集的运算,以及利用集合的包含关系求解参数问题,其中解答中熟记集合的基本运算,以及合理利用集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1-2022年浙江省三角形试题
- 2024年水利局公务员招录事业单位招聘考试600题题库及答案【夺冠系列】
- 双十一与环保营销
- 《小石潭记》课件6
- 《小石潭记》复习-课件
- 妇产科护理学(本科)练习试题
- 《中层干部管理实践》课件
- 试卷解析:广东省广州市越秀区2023-2024学年高一上学期期末数学试题(解析版)
- 《幼儿园设计规范》课件
- 佤族舞蹈发型课程设计
- 数字与图像处理-终结性考核-国开(SC)-参考资料
- 2024年度海外市场推广合作协议3篇
- 2024年新疆区公务员录用考试《行测》真题及答案解析
- 2024-2025学年高二上学期期中家长会-家校同频共话成长 课件
- 口腔医护人员礼仪培训
- 浙江省杭州市2025届高三上学期一模英语试题 含解析
- 2024年国际贸易佣金居间服务协议
- 医院科研项目管理制度
- 小学生防性侵安全教育课件
- 物 理2024-2025学年苏科版物理八年级上学期 期末综合测试卷
- 2024年保安员证考试题库及答案(共200题)
评论
0/150
提交评论