版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省安阳市数学高一上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.与终边相同的角是A. B.C. D.2.下列选项中,与最接近的数是A. B.C. D.3.下列命题中正确的是()A.第一象限角小于第二象限角 B.锐角一定是第一象限角C.第二象限角是钝角 D.平角大于第二象限角4.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.5.已知,若,则的取值范围是()A. B.C. D.6.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或47.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.158.下面四个不等式中不正确的为A. B.C. D.9.设,,则a,b,c的大小关系是()A. B.C. D.10.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]二、填空题:本大题共6小题,每小题5分,共30分。11.函数一段图象如图所示,这个函数的解析式为______________.12.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____13.已知函数f(x)=1g(2x-1)的定义城为______14.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.15.函数的定义域为_________________________16.集合,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知求的值;求的值.18.某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).(1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;19.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.20.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域21.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲6699乙79xy(1)若乙的平均得分高于甲的平均得分,求x的最小值;(2)设,,现从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求的概率;(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】与终边相同的角是.当1时,故选D2、C【解析】,该值接近,选C.3、B【解析】根据象限角的定义及锐角、钝角及平角的大小逐一分析判断即可得解.【详解】解:为第一象限角,为第二象限角,故A错误;因为锐角,所以锐角一定是第一象限角,故B正确;因为钝角,平角,为第二象限角,故CD错误.故选:B.4、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A5、B【解析】由以及,可得,即得,再根据基本不等式即可求的取值范围.【详解】解:,不妨设,若,由,得:,即与矛盾;同理,也可导出矛盾,故,,即,而,即,即,当且仅当,即时等号成立,又,故,即的取值范围是.故选:B.6、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.7、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积8、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题9、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.10、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由图象的最大值求出A,由周期求出ω,通过图象经过(,0),求出φ,从而得到函数的解析式【详解】由函数的图象可得A=2,T==4π,∴解得ω=∵图象经过(,0),∴可得:φ=2kπ,k∈Z,解得:φ=2kπ,k∈Z,取k=0∴φ,故答案为:y=2sin(x)12、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.13、【解析】根据对数函数定义得2x﹣1>0,求出解集即可.【详解】∵f(x)=lg(2x﹣1),根据对数函数定义得2x﹣1>0,解得:x>0,故答案为(0,+∞).【点睛】考查具体函数的定义域的求解,考查了指数不等式的解法,属于基础题14、【解析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【点睛】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案15、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)16、【解析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【详解】因为,,所以.故答案为:【点睛】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)作的平方可得,则,由的范围求解即可;(2)先利用降幂公式和切弦互化进行化简,得原式,将与代入求解即可【详解】(1)由题,,则,因为又,则,所以因此,(2)由题,由(1)可,代入可得原式【点睛】本题考查同角的平方关系式及完全平方公式的应用,考查降幂公式,考查切弦互化,考查运算能力18、(1);(2),.【解析】(1)根据题意列函数关系式即可,需注意,当时,由题意不生产纪念章,故;(2)利用配方法分别求解不同条件下的最值,并进行比较即可,需注意每枚的销售价格应为正整数【详解】(1)依题意,得,整理可得(2)由(1)可得,当时,则当时,;当时,则当或时,;因为,则当时,【点睛】本题考查函数关系式在生活中的应用,考查配方法求最值,实际应用中要注意自变量的取值范围19、(1);(2)天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元.【解析】(1)设出比例系数,根据题意得到建设费用y(万元)表示成P站与甲城距离x(km)的函数的解析式,再利用代入法求出比例系数,进而求出函数解析式、定义域;(2)利用配方法进行求解即可.【详解】(1)设比例系数为k,则又,,所以,即,所以(1)由(1)可得所以所以当时,y有最小值为1250万元所以天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元,20、(1)(2)【解析】(1)根据图像和“五点法”即可求出三角函数的解析式;(2)根据三角恒等变换可得,结合x的取值范围和正弦函数的性质即可得出结果.小问1详解】由图像可知的最大值是1,所以,当时,,可得,又,所以当时,有最小值,所以,解得,所以;【小问2详解】,由可得所以,所以.21、(1)5(2)(3)6,7,8【解析】(1)由题意得,又,即可求得x的最小值;(2)利用列举法能求出古
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年展架租赁合同范本3篇
- 2024年二手车交易合同新规定3篇
- 2024年新能源车辆租赁与运营合同
- 2024年度文具采购标准协议范例版B版
- 2024年度粮食批量采购与销售合作合同版
- 2024年国际物流运输服务协议模板版A版
- 2024年度股权转让合同(优先购买权)
- 2024年度企业员工借款与劳动争议风险评估合同3篇
- 2024年度软件定制开发合同的用户使用权限3篇
- 2024年农产品买卖合同2篇
- 德语口语课件
- 液力液力耦合器课件
- 冬季防冻培训课件
- 新生儿医源性皮肤损伤的分析与护理讲义课件
- 物业管理服务会议会务服务方案
- 北京市乡镇卫生院街道社区卫生服务中心地址医疗机构名单(344家)
- 旅游服务心理课件
- 【精品主题班会】高三家长会(共30张PPT)
- 机器损坏险条款
- 收款账户确认书
- 文件借阅申请表
评论
0/150
提交评论