云南省玉龙县第一中学2025届数学高二上期末考试试题含解析_第1页
云南省玉龙县第一中学2025届数学高二上期末考试试题含解析_第2页
云南省玉龙县第一中学2025届数学高二上期末考试试题含解析_第3页
云南省玉龙县第一中学2025届数学高二上期末考试试题含解析_第4页
云南省玉龙县第一中学2025届数学高二上期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉龙县第一中学2025届数学高二上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A. B.C. D.2.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-103.已知双曲线C的离心率为,则双曲线C的渐近线方程为()A. B.C. D.4.已知点到直线:的距离为1,则等于()A. B.C. D.5.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.26.直线与圆的位置关系是()A.相交 B.相切C.相离 D.不确定7.已知分别是等差数列的前项和,且,则()A. B.C. D.8.已知等比数列的各项均为正数,公比,且满足,则()A.8 B.4C.2 D.19.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.10.某产品的销售收入(万元)是产量x(千台)的函数,且函数解析式为,生产成本(万元)是产量x(千台)的函数,且函数解析式为,要使利润最大,则该产品应生产()A.6千台 B.7千台C.8千台 D.9千台11.已知全集,,()A. B.C. D.12.在直三棱柱中,,M,N分别是,的中点,,则AN与BM所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数,其导函数为函数,则__________14.某天上午只排语文、数学、体育三节课,则体育不排在第一节课的概率为_________15.已知正方形的边长为分别是边的中点,沿将四边形折起,使二面角的大小为,则两点间的距离为__________16.已知点在圆C:()内,过点M的直线被圆C截得的弦长最小值为8,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,C是以为直径的圆上异于的点,平面平面分别是的中点.(1)证明:平面;(2)若直线与平面所成角的正切值为2,求锐二面角的余弦值.18.(12分)已知等比数列的公比,且,是的等差中项.数列的前n项和为,满足,.(1)求和的通项公式;(2)设,求的前2n项和.19.(12分)如图,四棱台的底面为正方形,面,(1)求证:平面;(2)若平面平面,求直线m与平面所成角的正弦值20.(12分)已知函数.(1)讨论函数的单调性;(2)若恒成立,求实数的取值范围.21.(12分)如图,已知椭圆的左顶点,过右焦点的直线与椭圆相交于两点,当直线轴时,.(1)求椭圆的方程;(2)记,的面积分别为,求的取值范围;(3)若的重心在圆上,求直线的斜率.22.(10分)已知数列是公差不为0的等差数列,首项,且成等比数列(1)求数列的通项公式;(2)设数列满足,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据微积分基本定理即可直接求出答案.【详解】故选:B.2、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C3、B【解析】根据双曲线的离心率,求出即可得到结论【详解】∵双曲线的离心率是,∴,即1+,即1,则,即双曲线的渐近线方程为,故选:B4、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.5、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B6、A【解析】首先求出直线过定点,再判断点在圆内,即可判断;【详解】解:直线恒过定点,又,即点在圆内部,所以直线与圆相交;故选:A7、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D8、A【解析】根据是等比数列,则通项为,然后根据条件可解出,进而求得【详解】由为等比数列,不妨设首项为由,可得:又,则有:则故选:A9、C【解析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.10、A【解析】构造利润函数,求导,判断单调性,求得最大值处对应的自变量即可.【详解】设利润为y万元,则,∴.令,解得(舍去)或,经检验知既是函数的极大值点又是函数的最大值点,∴应生产6千台该产品.故选:A【点睛】利用导数求函数在某区间上最值的规律:(1)若函数在区间上单调递增或递减,与一个为最大值,一个为最小值(2)若函数在闭区间上有极值,要先求出上的极值,与,比较,最大的是最大值,最小的是最小值,可列表完成(3)函数在区间上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到11、C【解析】根据条件可得,则,结合条件即可得答案.【详解】因,所以,则,又,所以,即.故选:C12、D【解析】构建空间直角坐标系,根据已知条件求AN与BM对应的方向向量,应用空间向量夹角的坐标表示求AN与BM所成角的余弦值.【详解】建立如下图所示的空间直角坐标系,∴,,,,∴,,∴,所以AN与BM所成角的余弦值为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.14、【解析】写出语文、数学、体育的所有可能排列,找出其中体育不排在第一节课的情况,利用概率公式计算即可.【详解】所有可能结果如下:(语文,数学,体育);(语文,体育,数学);(数学,语文,体育):(数学,体育,语文);(体育,语文,数学);(体育,数学,语文),其中体育不排在第一节课的情况有四种,则体育不排在第一节课的概率15、.【解析】取BE的中点G,然后证明是二面角的平面角,进而证明,最后通过勾股定理求得答案.【详解】如图,取BE的中点G,连接AG,CG,由题意,则是二面角的平面角,则,又,则是正三角形,于是.根据可得:平面ABE,而平面ABE,所以,而,则平面BCFE,又平面BCFE,于是,,又,所以.故答案为:.16、【解析】根据点与圆的位置关系,可求得r的取值范围,再利用过圆内一点最短的弦,结合弦长公式可得到关于r的方程,求解即可.【详解】由点在圆C:内,且所以,又,解得过圆内一点最短的弦,应垂直于该定点与圆心的连线,即圆心到直线的距离为又,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由分别是的中点,得到,在由是圆的直径,所以,结合面面垂直的性质定理,证得面,即可证得面;(2)以C为坐标原点,为x轴,为y轴,过C垂直于面直线为z轴,建立空间直角坐标系,分别求得平面与平面的一个法向量,结合向量的夹角公式,即可求解.【小问1详解】证明:在,因为分别是的中点,所以,又因为是圆的直径,所以,又由平面平面,平面平面,且平面,所以面,因为,所以面.【小问2详解】解:由(1)知面,所以直线与平面所成角为,由题意知,以C为坐标原点,为x轴,为y轴,过C垂直于面的直线为z轴,建立空间直角坐标系,如图所示,可得,则,,设面的法向量为,则,取,可得,所以,设面的法向量为,则,取,可得,所以,则,所以锐二面角的余弦值为.18、(1),()(2)【解析】(1)等差数列和等比数列的基本量的计算,根据条件列出方程,并解方程即可;(2)数列根据的奇偶分段表示,奇数项通过乘公比错位相减法克求得前项和,偶数项则是通过裂项求和.【小问1详解】由得,.又,,所以,即,解得或(舍去).所以(),当时,,当时,,经检验,时,适合上式,故().综上可得:,【小问2详解】由(1)可知,当n为奇数时,,当n为偶数时,,由题意,有①②①-②得:,则有:..故.19、(1)证明见解析;(2).【解析】(1):连结交交于点O,连结,,通过四棱台的性质以及给定长度证明,从而证出,利用线面平行的判定定理可证明面;(2)利用线面平行的性质定理以及基本事实可证明,即求与平面所成角的正弦值;通过条件以及面面垂直的判定定理可证明面面,则为与平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【详解】(1)证明:连结交交于点O,连结,,由多面体为四棱台可知四点共面,且面面,面面,面面,∴,∵和均为正方形,,∴,所以为平行四边形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直线m与平面所成角可转化为求与平面所成角,∵和均为正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,设O在面的投影为M,则,∴为与平面所成角,由,可得,又∵,∴∴,直线m与平面所成角的正弦值为.【点睛】思路点睛:(1)找两个平面的交线,可通过两个平面的交点找到,也可利用线面平行的性质找和交线的平行直线;(2)求直线和平面所成角,过直线上一点做平面的垂线,则垂足和斜足连线与直线所成角即为直线和平面所成角.20、(1)当时,上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)【解析】(1)先求函数的定义域,再求导,根据导数即可求出函数的单调区间;(2)根据(1)的结论,分别求时的最小值,令,即可求出实数的取值范围.【小问1详解】易知函数的定义域为,,当时,,所以在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增.【小问2详解】当时,成立,所以符合题意;当时,在上单调递减,在上单调递增,要使恒成立,则,解得;当时,在上单调递减,在上单调递增,要使恒成立,则,解得.综上所述,实数的取值范围是.21、(1)(2)(3)【解析】(1)根据已知条件得到,,即可得到椭圆的方程.(2)首先设直线为,与椭圆联立得到,根据得到的范围,从而得到的范围.(3)设重心,根据重心性质得到,,再代入求解即可.小问1详解】因为左顶点,所以,根据,可得,解得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论