贵州省铜仁一中2025届高二上数学期末预测试题含解析_第1页
贵州省铜仁一中2025届高二上数学期末预测试题含解析_第2页
贵州省铜仁一中2025届高二上数学期末预测试题含解析_第3页
贵州省铜仁一中2025届高二上数学期末预测试题含解析_第4页
贵州省铜仁一中2025届高二上数学期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省铜仁一中2025届高二上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左右焦点分别是和,点关于渐近线的对称点恰好落在圆上,则双曲线的离心率为()A. B.2C. D.32.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.3.已知函数在处取得极值,则的极大值为()A. B.C. D.4.已知两条异面直线的方向向量分别是,,则这两条异面直线所成的角满足()A. B.C. D.5.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.86.已知,则a,b,c的大小关系为()A. B.C. D.7.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.8.下列直线中,倾斜角为45°的是()A. B.C. D.9.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定10.若,则()A.1 B.2C.4 D.811.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定12.设是虚数单位,则复数对应的点在平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.函数定义域为___________.14.等比数列的前n项和,则的通项公式为___________.15.已知直线与之间的距离为,则__________16.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的公差为2,且,,成等比数列.(1)求的通项公式;(2)求数列的前项和.18.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.19.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.20.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.21.(12分)如图,多面体中,平面平面,,四边形为平行四边形.(1)证明:;(2)若,求二面角的余弦值.22.(10分)已知向量,(1)求;(2)求;(3)若(),求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac的齐次式,即可求出双曲线的离心率【详解】由题意可设,则到渐近线的距离为.设关于渐近线的对称点为M,F1M与渐近线交于A,∴MF1=2b,A为F1M的中点.又O是F1P的中点,∴OA∥F2M,∴为直角,所以△为直角三角形,由勾股定理得:,所以,所以,所以离心率故选:B.2、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B3、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B4、D【解析】利用向量夹角余弦公式直接求解【详解】解:两条异面直线的方向向量分别是,,这两条异面直线所成的角满足:,,故选:D5、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.6、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A7、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B8、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C9、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C10、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.11、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C12、A【解析】计算出复数即可得出结果.【详解】由于,对应的点的坐标为,在第一象限,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据函数定义域的求法,即可求解.【详解】解:,解得,故函数的定义域为:.故答案为:.14、【解析】利用的关系,结合是等比数列,即可求得结果.【详解】因为,故当时,,则,又当时,,因为是等比数列,故也满足,即,故,此时满足,则.故答案为:.15、或##或【解析】利用平行直线间距离公式构造方程求解即可.【详解】方程可化为:,由平行直线间距离公式得:,解得:或.故答案为:或.16、【解析】令则,∴在R上是减函数又等价于∴故不等式的解集是答案:点睛:本题考查用构造函数的方法解不等式,即通过构造合适的函数,利用函数的单调性求得不等式的解集,解题时要注意常见的函数类型,如在本题中由于涉及到,故可从以下两种情况入手解决:(1)对于,可构造函数;(2)对于,可构造函数三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由,,成等比数列和,可得,解方程求出,从而可求出的通项公式,(2)由(1)可得,然后利用裂项相消法可求出【小问1详解】因为等差数列的公差为2,所以又因为成等比数列,所以,解得,所以.【小问2详解】由(1)得,所以.18、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.19、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或20、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用两边取自然对数,利用表中的数据即可求解;(2)分别计算模型①、②在时残差;(3)根据相关指数的大小判断摸型①、②的残差平方和,再得出那个模型的拟合效果更好.【小问1详解】由,得,令,得,由表Ⅱ数据可得,,,所以,所以回归方程为(或).【小问2详解】由题意可知,模型①在时残差为,模型②在时残差为.【小问3详解】因为,即模型①的相关指数大于模型②的相关指数,由相关指数公式知,模型①的残差平方和小于模型②的残差平方和,因此模型①得到的数据更接近真实数据,所以模型①的拟合效果更好.21、(1)证明见解析(2)【解析】(1)先通过平面平面得到,再结合,可得平面,进而可得结论;(2)取的中点,的中点,连接,,以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量的夹角即可得结果.【详解】解:(1)因为平面平面,交线为,又,所以平面,,又,,则平面,平面,所以,;(2)取的中点,的中点,连接,,则平面,平面;以点坐标原点,分别以,,为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论