版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页山东省16地市2025届九上数学开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l22、(4分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3) B.(3,﹣1) C.(﹣3,1) D.(﹣5,2)3、(4分)用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+)2= B.(x+)2=C.(x+3)2=10 D.(x+3)2=84、(4分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y5、(4分)如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.6、(4分)已知,则()A. B. C. D.7、(4分)如图,,点是垂直平分线的交点,则的度数是()A. B.C. D.8、(4分)在△ABC中,若AB=8,BC=15,AC=17,则AC边上的中线BD的长为()A.8 B.8.5 C.9 D.9.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.10、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.11、(4分)如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.12、(4分)如图,有一块菱形纸片ABCD,沿高DE剪下后拼成一个矩形,矩形的长和宽分别是5cm,3cm.EB的长是______.13、(4分)若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.15、(8分)求不等式组2(x-1)≥x-4x+716、(8分)如图,在平面直角坐标系中,直线EF交x,y轴子点F,E,交反比例函数(x>0)图象于点C,D,OE=OF=,以CD为边作矩形ABCD,顶点A与B恰好落在y轴与x轴上.(1)若矩形ABCD是正方形,求CD的长;(2)若AD:DC=2:1,求k的值.17、(10分)先化简,再求值:,其中18、(10分)已知正方形,直线垂直平分线段,点是直线上一动点,连结,将线段绕点顺时针旋转得到线段,连接.(1)如图,点在正方形内部,连接,求的度数;(2)如图,点在正方形内部,连接,若,求的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)20、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.21、(4分)如图,AD∥BC,CP和DP分别平分∠BCD和∠ADC,AB过点P,且与AD垂直,垂足为A,交BC于B,若AB=10,则点P到DC的距离是_____.22、(4分)如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.23、(4分)计算:_________.二、解答题(本大题共3个小题,共30分)24、(8分)已知城有肥料200吨,城有肥料300吨.现将这些肥料全部运往,两乡.乡需要的肥料比乡少20吨.从城运往,两乡的费用分别为每吨20元和25元;从城运往,两乡的费用分别为每吨15元和24元.(1)求,两乡各需肥料多少吨?(2)设从城运往乡的肥料为吨,全部肥料运往,两乡的总运费为元,求与之间的函数关系式,并直接写出自变量的取值范围;(3)因近期持续暴雨天气,为安全起见,从城到乡需要绕道运输,实际运费每吨增加了元(),其它路线运费不变.此时全部肥料运往,两乡所需最少费用为10520元,则的值为__(直接写出结果).25、(10分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件,设每件涨价x元(x为非负整数),每星期的销量为y件.(1)写出y与x的关系式;(2)要使每星期的利润为1560元,从有利于消费者的角度出发,售价应定为多少?26、(12分)下面是小明设计的“作平行四边形ABCD的边AB的中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AB的中点.作法:如图,①作射线DA;②以点A为圆心,BC长为半径画弧,交DA的延长线于点E;③连接EC交AB于点M.所以点M就是所求作的点.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AC,EB.∵四边形ABCD是平行四边形,∴AE∥BC.∵AE=,∴四边形EBCA是平行四边形()(填推理的依据).∴AM=MB()(填推理的依据).∴点M为所求作的边AB的中点.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.故选:A.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.2、C【解析】
此题涉及的知识点是坐标与图形的变化﹣平移,掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,就可以得出结果.【详解】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选C此题重点考察学生对于图形的平移的应用,掌握点的坐标的平移规律是解题的关键.3、B【解析】
把常数项1移项后,在左右两边同时加上一次项系数3的一半的平方,由此即可求得答案.【详解】∵x2+3x+1=0,∴x2+3x=﹣1,∴x2+3x+()2=﹣1+()2,即(x+)2=,故选B.本题考查了解一元二次方程--配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.4、B【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B是完全平方公式的形式,故B能分解因式;故选B.5、A【解析】
取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.本题考查了正方形的性质,根据题意确定E点的位置是解题关键.6、B【解析】
先利用二次式的乘法法则与二次根式的性质求出m=2=,再利用夹值法即可求出m的范围.【详解】解:=2=,∵25<28<36,∴.故选:B.本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.7、B【解析】
利用线段垂直平分线的性质即可得出答案.【详解】解:连接OA,OB∵∠BAC=80°∴∠ABC+∠ACB=100°又∵O是AB和AC垂直平分线的交点∴OA=OB,OA=OC∴∠OBA=∠OAB,∠OCA=∠OAC,OB=OC∴∠OBA+∠OCA=80°∴∠OBA+∠OCB=100°-80°=20°又∵OB=OC∴∠BCO=∠CBO=10°故答案选择B.本题主要考查了线段垂直平分线和等腰三角形的性质.8、B【解析】
首先判定△ABC是直角三角形,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【详解】∵82+152=289=172,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∵BD是AC边上的中线,∴BD=AC=8.5,故选B.此题主要考查了勾股定理逆定理,以及直角三角形的性质,关键是正确判定△ABC的形状.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】
根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
所以这5个数据分别是x,y,2,1,1,且x<y<2,
当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
所以这组数据可能的最大的和是0+1+2+1+1=2.
故答案为:2.主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、【解析】
根据平行四边形的性质可得到答案.【详解】∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.11、2.【解析】
根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S
正方形ABCD,从而可求得其面积.【详解】解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,
∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,∴∠AOG=∠DOF,
在△AOG和△DOF中,
∵,
∴△AOG≌△DOF(ASA),
∴S四边形OFDG=S△AOD=S
正方形ABCD=×=2;
则图中重叠部分的面积是2cm1,
故答案为:2.本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.12、1cm【解析】
根据菱形的四边相等,可得AB=BC=CD=AD=5,在Rt△AED中,求出AE即可解决问题.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=5(cm),∵DE⊥AB,DE=3(cm),在Rt△ADE中,AE==4,∴BE=AB−AE=5−4=1(cm),故答案为1cm.本题考查了菱形的性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,试题难度不大.13、-2【解析】根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.故答案为﹣2.三、解答题(本大题共5个小题,共48分)14、(1)四边形AECF为平行四边形;(2)见解析【解析】试题分析:(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.15、-1、-1、0、1、1.【解析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解.试题解析:2(x-1)≥x-4①解不等式①,得x≥-2,解不等式②,得x<3,∴不等式组的解集为-2≤x<3.∴不等式组的整数解为-1、-1、0、1、1.考点:解一元一次不等式组.16、(1);(2)k=12【解析】【分析】(1)根据等腰三角形的性质以及勾股定理可得EF的长,继而根据正方形的性质即可得DE=DC=CF,从而即可求得CD的长;(2)由四边形ABCD是矩形,可得AD=BC,根据(1)得:AD=DE,BC=FC,且2CD=AD,从而可得2CD=DE=CF,根据DE+CD+FC=EF,继而可求得DE的长,作DG⊥AE,垂足为点G,在等腰直角三角形ADE中,求得DG=EG=2,继而求得OG长,从而可得点D(2,3),即可求得k.【详解】(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ADC=∠BCD=90°,∴∠ADE=∠BCF=90°,∵OE=OF=5,又∵∠EOF=90°,∴∠OEF=∠OFE=45°,FE=10,∴CD=DE=AD=CB=CF=;(2)∵四边形ABCD是矩形,∴AD=BC,∵由(1)得:AD=DE,BC=FC,且2CD=AD,∴2CD=DE=CF,∵DE+CD+FC=EF,∴DE=EF=4,作DG⊥AE,垂足为点G,由(1)得在等腰直角三角形ADE中,DG=EG=DE=2,∴OG=OE-EG=5-2=3,∴D(2,3),得:k=12.【点睛】本题考查了反比例函数与几何的综合,涉及到等腰直角三角形的性质、正方形的性质、矩形的性质等,熟练掌握相关性质和定理以及反比例函数比例系数k的几何意义是解题的关键.17、,【解析】
根据分式的混合运算法则把原式化简,把x的值代入计算即可【详解】解:原式当时,原式本题考查整式的混合运算-化简求值,解题的关键是明确整式的混合运算的计算方法.18、(1);(2).【解析】
(1)连接MC,利用等边对等角可知,于是(2)连,过作交于点.证得,由此证得三角形NCD为等腰三角形,设,用x表示ND2和CD2即可求得【详解】(1)连.∵为垂直平分线∴又∵∴∴∴即(2)连,过作交于点由(1)可得∴又∵∴∴,设交于交于,交于在中,∴∴∴本题考查了正方形的性质、旋转的性质、等腰三角形的性质和判定、全等三角形的性质和判定,属于较难的综合题,熟练掌握相关性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、-1【解析】
先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【详解】∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.故答案为:-1.本题考查了函数值,解题的关键是掌握函数值的计算方法.20、(7,4)(2n﹣1,2n﹣1).【解析】
根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.【详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,∴点Bn的坐标为(2n﹣1,2n﹣1).故答案为:(7,4),(2n﹣1,2n﹣1)本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.21、1【解析】
过点P作PE⊥DC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PB=PE,再根据AB=10,即可得到PE的长.【详解】如图,过点P作PE⊥DC于E.∵AD∥BC,PA⊥AD,∴PB⊥CB.∵CP和DP分别平分∠BCD和∠ADC,∴PA=PE,PB=PE,∴PE=PA=PB.∵PA+PB=AB=10,∴PA=PB=1,∴PE=1.故答案为1.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.22、1【解析】
由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.【详解】解:由折叠的性质知,AE=AB=CD,CE=BC=AD,
∴△ADC≌△CEA,∠EAC=∠DCA,
∴CF=AF=cm,DF=CD-CF=AB-CF==,
在Rt△ADF中,由勾股定理得,
AD2=AF2-DF2,则AD=1cm.∴BC=AD=1cm.
故答案为:1.本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.23、【解析】
先计算二次根式的乘法,然后进行化简,最后合并即可.【详解】原式.故答案为:.本题考查了二次根式的混合运算,掌握各种知识点的运算法则是解答本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)140吨,160吨;(1);(3)a=1【解析】
(1)设C乡需肥料m吨,根据题意列方程得答案;(1)根据:运费=运输吨数×运输费用,得一次函数解析式;(3)利用一次函数的性质列方程解答即可.【详解】(1)设乡需要肥料吨,列方程得解得,即两乡分别需肥料140吨,160吨;(1),取值范围为:;(3)根据题意得,(-4+a)x+11000=10510,由(1)可知k=-4<0,w随x的增大而减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度煤炭场地租赁合同范本(全新)8篇
- 2025年度环保设施运营管理合同汇编大全3篇
- 记事本软件课程设计报告
- 二零二五年度出租车安全驾驶责任承包合同3篇
- 二零二五年度奥迪A7购入与车辆改装服务协议2篇
- 《解毒通络调肝降浊方治疗2型糖尿病合并高尿酸血症患者的临床研究》
- 二零二五年家政服务与家庭礼仪培训合同3篇
- 二零二五年度家庭土地承包经营权生态保护合同2篇
- 医疗背景下的语文教育内容与教学方法
- 《紫外诱变纤维素分解菌降解木薯渣的研究》
- 培养学生深度思考的能力
- 中医医院运营方案
- 【瑞幸咖啡财务分析报告(附财务报表)5300字(论文)】
- 过敏性鼻炎-疾病研究白皮书
- 乌头碱中毒急诊科培训课件-
- 三轴水泥搅拌桩施工质量措施
- 贵州茅台2023审计报告
- 幼儿园学前教育五以内的数字比大小练习题
- 高速铁路沉降观测与评估
- IT项目周报模板
- 地脉动测试原理及应用
评论
0/150
提交评论