版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页六安市重点中学2024年数学九年级第一学期开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题中是真命题的有()个.①当x=2时,分式的值为零②每一个命题都有逆命题③如果a>b,那么ac>bc④顺次连接任意四边形各边中点得到的四边形是平行四边形⑤一组对边平行,另一组对边相等的四边形是平行四边形.A.0 B.1 C.2 D.32、(4分)下列数字图形中,是中心对称图形,但不是轴对称图形的为()A. B. C. D.3、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是()A.AE=BF B.AE⊥BFC.AO=OE D.S△AOB=S四边形DEOF4、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120° B.130° C.140° D.150°5、(4分)某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是()一周内累计的读书时间(小时)581014人数(个)1432A.8 B.7 C.9 D.106、(4分)关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣87、(4分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形8、(4分)以下各点中,在一次函数的图像上的是()A.(2,4) B.(-1,4) C.(0,5) D.(0,6)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一盒中只有黑、白两色的棋子(这些棋除颜色外无其他差别),设黑棋有x枚,白棋有y枚.如果从盒中随机取出一枚为黑棋的概率是,那么y=___.(请用含x的式子表示y)10、(4分)如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.11、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)12、(4分)如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.13、(4分)的小数部分为_________.三、解答题(本大题共5个小题,共48分)14、(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.15、(8分)如图,在平面直角坐标系中,直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,l2交x轴于点A,点P是直线l1上一动点,过点P作PQ∥y轴交l2于点Q(1)求出点A的坐标;(2)连接AP,当△APQ为以PQ为底边的等腰三角形时,求点P和点Q的坐标;(3)点B为OA的中点,连接OQ、BQ,若点P在y轴的左侧,M为直线y=﹣1上一动点,当△PQM与△BOQ全等时,求点M的坐标.16、(8分).已知:如图4,在中,∠BAC=90°,DE、DF是的中位线,连结EF、AD.求证:EF=AD.17、(10分)已知:如图,四边形ABCD是菱形,AB=AD.求证:(1)AB=BC=CD=DA(2)AC⊥DB(3)∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA18、(10分)如图,AM∥BC,D,E分别为AC,BC的中点,射线ED交AM于点F,连接AE,CF。(1)求证:四边形ABEF是平行四边形;(2)当AB=AC时,求证:四边形AECF时矩形;(3)当∠BAC=90°时,判断四边形AECF的形状,(只写结论,不必证明)。B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)(1)∠DFC+∠FEC=90°;(2)∠B=∠AEF;(3)CF=EF;(4)20、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是_______________21、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.22、(4分)一组数据:的方差是__________.23、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.二、解答题(本大题共3个小题,共30分)24、(8分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?25、(10分)化简:(1);(2).26、(12分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)品种星期一二三四五六日甲乙(1)分别求出本周内甲、乙两种水果每天销售量的平均数;(2)哪种水果销售量比较稳定?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据分式为0的条件、命题的概念、不等式的性质、平行四边形的判定定理进行判断即可.【详解】①当x=2时,分式无意义,①是假命题;②每一个命题都有逆命题,②是真命题;③如果a>b,c>0,那么ac>bc,③是假命题;④顺次连接任意四边形各边中点得到的四边形是平行四边形,④是真命题;⑤一组对边平行,另一组对边相等的四边形不一定是平行四边形,⑤是假命题,故选C.2、A【解析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可;【详解】A选项中,是中心对称图形但不是轴对称图形,故本选项正确;B选项中,是中心对称图形,也是轴对称图形,故本选项错误;C选项中,是中心对称图形,也是轴对称图形,故本选项错误;D选项中,不是中心对称图形,也不是轴对称图形,故本选项错误;本题主要考查了轴对称图形和中心对称图形的概念,掌握轴对称图形和中心对称图形的概念是解题的关键.3、C【解析】试题解析:A、∵在正方形ABCD中,
又
∴≌
故此选项正确;
B、∵≌
故此选项正确;
C、连接
假设AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假设不成立,即
故此选项错误;
D、∵≌
∴S△AOB=S四边形DEOF,故此选项正确.
故选C.4、C【解析】
由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.5、C【解析】试题分析:根据中位数的概念求解.∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为:=1.故选C.考点:中位数.6、C【解析】
利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.【详解】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>1,得c>﹣2根据选项,只有C选项符合,故选:C.本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1
时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.7、C【解析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】360÷40=9,即这个多边形的边数是9,故选C.本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.8、D【解析】
分别将各选项中的点代入一次函数解析式进行验证.【详解】A.当x=2时,,故点(2,4)不在一次函数图像上;B.当x=-1时,,故点(-1,4)不在一次函数图像上;C.当x=0时,,故点(0,5)不在一次函数图像上;D.当x=0时,,故点(0,6)在一次函数图像上;故选D.本题考查判断点是否在函数图像上,将点坐标代入函数解析式验证是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、3x.【解析】
根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.【详解】∵从盒中随机取出一枚为黑棋的概率是,∴,整理,得:y=3x,故答案为:3x.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、1【解析】
取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.【详解】如图,取AD的中点E,连接OE,CE,OC,∵∠AOD=10°,∴Rt△AOD中,OE=AD=4,又∵∠ADC=10°,AB=CD=3,DE=4,∴Rt△CDE中,CE==5,又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),∴OC的最大值为1,即点C到原点O距离的最大值是1,故答案为:1.此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.11、∠B=∠1或【解析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.12、8【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.【详解】∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.13、﹣1.【解析】解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)AF=5cm;(3)①有可能是矩形,P点运动的时间是8,Q的速度是0.5cm/s;②t=.【解析】
(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;
(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;
(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P在AB上,根据平行四边形的性质求出即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能再CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.考查了矩形的性质,平行四边形的性质和判定,菱形的判定和性质,勾股定理,全等三角形的性质和判定,线段垂直平分线性质等知识点的综合运用,用了方程思想,分类讨论思想.15、(1)A(2,0);(2)P(3,),Q(3,﹣);(3)M(﹣1,﹣1)或(﹣1,8)【解析】
(1)求出直线l2的解析式为y=﹣x+1,即可求A的坐标;(2)设点P(x,﹣x+2),Q(x,﹣x+1),由AQ=AP,即可求P点坐标;(3)设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),可求出BQ=,OQ=,PM=,QM=,①当△PQM≌△BOQ时,PM=BQ,QM=OQ,结合勾股定理,求出m;②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,结合勾股定理,求出m即可.【详解】解:(1)∵直线l1:y=﹣x+2向下平移1个单位后,得到直线l2,∴直线l2的解析式为y=﹣x+1,∵l2交x轴于点A,∴A(2,0);(2)当△APQ为以PQ为底边的等腰三角形时,∴AQ=AP,∵点P是直线l1上一动点,设点P(x,﹣x+2),∵过点P作PQ∥y轴交l2于点Q∴Q(x,﹣x+1),∴(﹣x+2)2=(﹣x+1)2,∴x=3,∴P(3,),Q(3,﹣);(3)∵点B为OA的中点,∴B(1,0),∴PQ=BO=1,设P(n,﹣n+2),M(m,﹣1),则Q(n,﹣n+1),∴BQ=,OQ=,PM=,QM=,①∵△PQM与△BOQ全等,①当△PQM≌△BOQ时,有PM=BQ,QM=OQ,=,=,∴n=2m﹣2,∵点P在y轴的左侧,∴n<0,∴m<1,∴m=﹣1,∴M(﹣1,﹣1);②当△QPM≌△BOQ时,有PM=OQ,QM=BQ,=,=,∴n=﹣m,∵点P在y轴的左侧,∴n<0,∴m>2,∴m=8,∴M(﹣1,8);综上所述,M(﹣1,﹣1)或M(﹣1,8).1:y=﹣x+2向下平移1个单位后,得到直线l2,本题考查一次函数的综合;熟练掌握一次函数的图象特点,等腰三角形与全等三角形的性质是解题的关键.16、证明:因为DE,DF是△ABC的中位线所以DE∥AB,DF∥AC………….2分所以四边形AEDF是平行四边形………….…5分又因为∠BAC=90°所以平行四边形AEDF是矩形……...8分所以EF=AD…………….….………10分【解析】略17、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】
(1)根据菱形定义:一组邻边相等的平行四边形是菱形即可解答;(2)利用SSS证明△ADO≌△CDO,可得:∠AOD=∠COD,又因为∠AOD+∠COD=180°,所以∠AOD=∠COD=90°即可得出AC⊥DB;(3)由△ADO≌△CDO,再根据全等三角形对应角相等,两直线平行,内错角相等即可解答.【详解】证明:(1)∵四边形ABCD是菱形,∴AB=CD,AD=CB.又∵AB=AD,∴AB=BC=CD=DA.(2)在△ADO和△CDO中,∵DA=DC,DO=DO,AO=CO,∴△ADO≌△CDO.∴∠AOD=∠COD.∵∠AOD+∠COD=180°,∴∠AOD=∠COD=90°.∴AC⊥DB.(3)∵△ADO≌△CDO,∴∠ADB=∠CDB,∠DAC=∠DCA.∵AB∥CD,AD∥CB,∴∠ADB=∠CBD,∠CDB=∠ABD,∠DAC=∠BCA,∠DCA=∠BAC.∴∠ADB=∠CDB,∠ABD=∠CBD,∠DAC=∠BAC,∠DCA=∠BCA.本题考查平行四边的性质、菱形性质、全等三角形的判定和性质、平行线的性质等,解题关键是熟练掌握以上性质.18、(1)见解析;(2)见解析;(3)四边形AECF是菱形【解析】
(1)利用三角形的中位线定理得出AB∥EF,再由AM∥BC可得出结论;(2)易证ΔADF≌ΔCDE,得出DE=DF,推出四边形AECF是平行四边形,再根据对角线相等的平行四边形是矩形可得结果;(3)利用四边相等的四边形是菱形解答即可.【详解】(1)证明:∵D,E分别为AC,BC的中点,∴AB∥EF,∵AB∥EF,AM∥BC∴四边形ABEF是平行四边形(2)证明:∵AM∥BC∴∠FAC=∠ACE,∠AFE=∠CEF∵AD=DC∴ΔADF≌ΔCDE∴DE=DF∴四边形AECF是平行四边形又∵四边形ABEF是平行四边形∴AB=EF∵AB=AC∴AC=EF∴平行四边形AECF是矩形(3)当∠BAC=90°时,四边形AECF是菱形。理由:∵∠BAC=90°,BE=CE,∴AE=BE=EC,∵四边形ABEF是平行四边形,四边形AECF是平行四边形,∴AF=BE,AE=FC,∴AE=EC=FC=AF,∴四边形AECF是菱形.本题考查了平行四边形的性质与判定,矩形的判定与菱形的判定,解题的关键是熟练掌握性质与判定.一、填空题(本大题共5个小题,每小题4分,共20分)19、(1)(3)【解析】
分别利用平行四边形的性质以及全等三角形的判定得出△AEF≌△DMF,得出角、线段之间关系,得出(1)(3)成立,(2)不成立;再由梯形面积和平行四边形面积关系进而得出(4)不成立.【详解】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵∠B=∠ADC>∠M,∴∠B>∠AEF,(2)不成立;∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,(3)成立;∴∠FEC=∠FCE,∵∠DCF+∠FEC=90°,∴∠DFC+∠FEC=90°,(1)成立;∵四边形ADCE的面积=(AE+CD)×CE,F是AD的中点,∴S△EFC=S四边形ADCE,∵S△BDC=S平行四边形ABCD=CD×CE,∴S△EFC≠S△BDC,(4)不成立;故答案为:(1)(3).此题主要考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识,证出△AEF≌△DMF是解题关键.20、m<【解析】当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2.故答案为m<1/2.21、x>1.【解析】
∵直线y=x+b与直线y=kx+6交于点P(1,5),∴由图象可得,当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.22、.【解析】
根据方差的公式进行解答即可.【详解】解:==2019,==0.故答案为:0.本题考查了方差的计算.23、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度春国家开放大学在线课程制作与授权合同
- 2024年度墙板施工工程风险管理合同3篇
- 《钢针零容忍》课件
- 红杏煤矿安全管理制度汇编(2012年版)
- 2024年度企业市场营销咨询服务详细协议
- 房地产 -中建机电工程精益建造汇编
- 2024中国移动安徽分公司春季社会招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国石化新气管道限公司毕业生招聘6人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信股份限公司云南分公司社会招聘8人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度企业社会责任报告编制服务协议3篇
- 2023年全国中学生语文能力竞赛样题
- YY/T 0471.5-2017接触性创面敷料试验方法第5部分:阻菌性
- GB/T 21601-2008危险品包装提梁提环强度试验方法
- GB/T 16571-2012博物馆和文物保护单位安全防范系统要求
- GB/T 16180-2014劳动能力鉴定职工工伤与职业病致残等级
- GB/T 11270.2-2002超硬磨料制品金刚石圆锯片第2部分:烧结锯片
- 统编版高中语文选择性必修上册各课知识点梳理
- GB 146.1-2020标准轨距铁路限界第1部分:机车车辆限界
- 物业装修管理(培训课件)
- 论证方法之对比论证的运用
- 电厂定置管理规定
评论
0/150
提交评论