版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页辽宁省本溪市名校2024年九上数学开学联考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,▱ABCD的周长为32cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.8cm B.24cm C.10cm D.16cm2、(4分)已知实数a,b,若a>b,则下列结论错误的是A.a-7>b-7 B.6+a>b+6 C. D.-3a>-3b3、(4分)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量(升)与行驶时间(小时)之间的函数关系的图象是()A. B.C. D.4、(4分)已知一次函数y=kx+b随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是(
)A. B. C. D.5、(4分)在平面直角坐标系中,点(1,-5)所在象限是()A.第四象限B.第三象限C.第二象限D.第一象限6、(4分)下列关系式中:y=﹣3x+1、、y=x2+1、y=,y是x的一次函数的有()A.1个 B.2个 C.3个 D.4个7、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是()A. B. C. D.8、(4分)已知两条对角线长分别为和的菱形,顺次连接它的四边的中点得到的四边形的面积是()A.100 B.48 C.24 D.12二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x与线段AB有公共点,则n的值可以为_____.(写出一个即可)10、(4分)化简二次根式的结果是______.11、(4分)已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。12、(4分)如图,已知∠BAC=60°,∠C=40°,DE垂直平分AC交BC于点D,交AC于点E,则∠BAD的度数是_________.13、(4分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平行四边形ABCD中,DB=DC,AE⊥BD于点E.若,求的度数.15、(8分)在平面直角坐标系xOy中,直线过点,直线:与直线交于点B,与x轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.①当b=4时,直接写出△OBC内的整点个数;②若△OBC内的整点个数恰有4个,结合图象,求b的取值范围.16、(8分)如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.17、(10分)如图①,正方形ABCD中,点E、F都在AD边上,且AE=FD,分别连接BE、FC,对角线BD交FC于点P,连接AP,交BE于点G;(1)试判断AP与BE的位置关系;(2)如图②,再过点P作PH⊥AP,交BC于点H,连接AH,分别交BE、BD于点N,M,请直接写出图②中有哪些等腰三角形.18、(10分)如图,已知二次函数的图象顶点在轴上,且,与一次函数的图象交于轴上一点和另一交点.求抛物线的解析式;点为线段上一点,过点作轴,垂足为,交抛物线于点,请求出线段的最大值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)将直线y=2x+1向下平移2个单位,所得直线的表达式是__________.20、(4分)如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.21、(4分)一组数据2,3,3,1,5的众数是_____.22、(4分)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.23、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.二、解答题(本大题共3个小题,共30分)24、(8分)为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7乙1(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?25、(10分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.26、(12分)在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是斜边AB和直角边BC上的点,把△ABC沿着直线DE折叠,顶点B的对应点是点B′.(1)如图①,如果点B′和点A重合,求CE的长.(2)如图②,如果点B′落在直角边AC的中点上,求BE的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=32cm,∴AD+DC=16cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=16cm,故选D.本题考查了平行四边形的性质,线段垂直平分线的性质,三角形的周长,熟练掌握相关性质定理是解题的关键.2、D【解析】A.∵a>b,∴a-7>b-7,∴选项A正确;B.∵a>b,∴6+a>b+6,∴选项B正确;C.∵a>b,∴,∴选项C正确;D.∵a>b,∴-3a<-3b,∴选项D错误.故选D.3、B【解析】
根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.【详解】解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),
结合解析式可得出图象:
故选:B.此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.4、A【解析】
先根据函数图像得出其经过的象限,由一次函数图像与系数的关系即可得出结论.【详解】因为y随着x的增大而减小,可得:k<0,因为kb<0,可得:b>0,所以图像经过一、二、四象限.故选A.本题考查的是一次函数的图像与系数的关系,即一次函数y=kx+b(k0)中,当k<0,b>0时函数的图像经过一、二、四象限.5、A【解析】分析:根据象限内点的坐标特征即可解答.详解:点(1,-5)横坐标为正,纵坐标为负,故该点在第四象限.点睛:本题主要考查了象限内点的坐标特征,牢记点的坐标特征是解题的关键.6、B【解析】
形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:函数y=﹣3x+1,,y=x2+1,y=中,y是x的一次函数的是:y=﹣3x+1、y=,共2个.故选:B.本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.7、C【解析】
把B点的横坐标减2,纵坐标加1即为点B´的坐标.【详解】解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
∴点B´的坐标是(−3,2).
故选:C.本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.8、D【解析】
顺次连接这个菱形各边中点所得的四边形是矩形,且矩形的边长分别是菱形对角线的一半.【详解】解:如图∵E、F、G、H分别为各边中点
∴EF∥GH∥AC,EF=GH=AC,
EH=FG=BD,EH∥FG∥BD
∵DB⊥AC,
∴EF⊥EH,
∴四边形EFGH是矩形,
∵EH=BD=3cm,EF=AC=4cm,
∴矩形EFGH的面积=EH×EF=3×4=12cm2,
故选D.本题考查了菱形的性质,菱形的四边相等,对角线互相垂直,连接菱形各边的中点得到矩形,且矩形的边长是菱形对角线的一半.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】【分析】由直线y=1x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围,在其内任取一数即可得出结论.【详解】∵直线y=1x与线段AB有公共点,∴1n≥3,∴n≥,故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.10、【解析】
利用二次根式的性质化简.【详解】=.故选为:.考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.11、6【解析】
根据扇形的面积计算公式:,把相应数值代入即可.【详解】解:设母线长为r,圆锥的侧面展开后是扇形,侧面积=6π,
∴r=6cm,
故答案是6cm.本题考查了圆锥的计算,利用了扇形的面积公式求解,解题的关键是牢记圆锥的有关公式,难度不大.12、20°【解析】
根据垂直平分线的性质可得∠DAC=∠C=40°,又∠BAC=60°,从而可得结论.【详解】∵DE垂直平分AC,∴AD=CD,∴∠DAC=∠C=40°,∵∠BAC=60°,∴∠BAD=∠BAC-∠DAC=60°-40°=20°.故答案为:20°.此题考查了线段垂直平分线的性质,熟练掌握垂直平分线的性质是解决此题的关键.13、(-3,-1)【解析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q与点P(3,﹣1)关于y轴对称,∴Q(-3,-1).故答案为:(-3,-1).本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.三、解答题(本大题共5个小题,共48分)14、68°【解析】
根据直角三角形的性质求出,然后根据平行线的性质可得,最后根据等边对等角和三角形的内角和定理即可求出的度数.【详解】解:∵∴∴∵四边形是平行四边形∴∵∴此题考查的是平行四边形的性质、等腰三角形的性质和直角三角形的性质,掌握平行四边形的性质、等边对等角和直角三角形的两个锐角互余是解决此题的关键.15、(1)k=2;(2)①有2个整点;②或.【解析】
(1)把A(1,2)代入中可得k的值;(2)①将b=4代入可得:直线解析式为y=-x+4,画图可得整点的个数;②分两种情况:b>0时,b<0时,画图可得b的取值.【详解】解:(1)∵直线过点,∴k=2;(2)①将b=4代入可得:直线解析式为y=-x+4,画图可得整点的个数如图:有2个整点;②如图:观察可得:或.故答案为(1)k=2;(2)①有2个整点;②或.本题考查了正比例函数与一次函数的交点问题:求正比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.16、(1)D(1,0)(2)y=x-6(3)可求得点C(2,-3),则S△ADC=【解析】
解:(1)因为是:与轴的交点,所以当时,,所以点;(2)因为在直线上,设的解析式为,所以直线的函数表达式;(3)由,所以点的坐标为,所以的底高为的纵坐标的绝对值为,所以;此题考查一次函数解析式的求法,一次函数与坐标轴交点的求.和二元一次方程组的解法,两条直线交点的求法,即把两个一次函数对应的解析式构成二元一次方程组,求出方程组的解就是两条直线的交点坐标,也考查了三角形面积的求法;17、(1)垂直,理由见解析;(2)△ABD,△BCD是等腰△,△APH是等腰△,△PHC是等腰△.【解析】
(1)由题意可证△ADP≌△DPC,△AEB≌△DFC可得∠DAP=∠DCF=∠ABE,通过角的换算可证AP⊥BE.(2)根据正方形的性质可得△ABD,△BCD是等腰△,由AP⊥PH,∠ABC=90°可得A,B,H,P四点共圆,可证△APH,△PHC是等腰△【详解】(1)垂直,理由是∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠CDA=90°,∠ADB=∠CDB=45°,且DP=DP,∴△ADP≌△CDP,∴∠DCF=∠DAP,AP=PC又AE=DF,∠BAD=∠CDA=90°,AB=CD,∴△ABE≌△DCF,∴∠ABE=∠DCF,∴∠ABE=∠DAP∵∠ABE+∠AEB=90°,∴∠DAP+∠AEB=90°,即∠AGE=90°,∴AP⊥BE(2)∵AB=BC=CD=DA∴△ABD,△BCD是等腰△∵AP⊥PH,∠ABC=90°∴A,B,H,P四点共圆∴∠PAH=∠DBC=45°∴∠PAH=∠PHA=45°∴PA=PH∴△APH是等腰△∵AP=PH,AP=PC,∴PC=PH∴△PHC是等腰△.本题考查了正方形的性质,全等三角形的性质和判定,关键是利用这些性质解决问题.18、(1);(2)线段的最大值为.【解析】
(1)根据题意首先计算A、B点的坐标,设出二次函数的解析式,代入求出参数即可.(2)根据题意设F点的横坐标为m,再结合抛物线和一次函数的解析式即可表示F、D的纵坐标,所以可得DF的长度,使用配方法求解出最大值即可.【详解】解:,二次函数与一次函数的图象交于轴上一点,点为,点为.二次函数的图象顶点在轴上.设二次函数解析式为.把点代入得,.抛物线的解析式为,即.设点坐标为,点坐标为..当时,即,解得.点为线段上一点,.当时,线段的最大值为.本题主要考查二次函数的性质,关键在于利用配方法求解抛物线的最大值,这是二次函数求解最大值的常用方法,必须熟练掌握.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】由题意得:平移后的解析式为:y=2x+1-2=2x-1,即.所得直线的表达式是y=2x-1.故答案为y=2x-1.20、1【解析】
根据菱形的性质得出CD=AD,BC∥OA,根据D
(4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.【详解】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D
(4,2),反比例函数的图象经过点D,∴k=8,C点的纵坐标是2×2=4,∴,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C点,故答案为:1.本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.21、3【解析】
根据众数的定义进行求解即可得.【详解】数据2,3,3,1,5中数据3出现次数最多,所以这组数据的众数是3,故答案为3.本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.22、1:1【解析】以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,∵点B在直线AB上,点C、D在直线CD上,∴1=3k,解得:k=,,∴yAB=x,yCD=-x+3,∴点P的坐标为(,),∴S△PBD:S△PAC=.故答案是:1:1.23、【解析】
第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.【详解】解:第二个矩形的面积为第一个矩形面积的;第三个矩形的面积是第一个矩形面积的;…故第n个矩形的面积为第一个矩形面积的.又∵第一个矩形的面积为4,∴第n个矩形的面积为.故答案为:.本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)甲胜出;(3)见解析.【解析】试题分析:(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断;
(3)希望
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投标委托书(15篇)
- 建筑工程施工项目承包合同书
- 细胞-乳腺癌课件
- 马来酸麦角新碱联合卡前列素氨丁三醇治疗高危产后出血倾向二次剖宫产产妇的效果
- 中国企业智能化成熟度报告(2024) -企业智能化转型进入2.0时代
- 广东省中山市高考语文模拟试题(含答案)
- 2025年养老行业前景与未来发展趋势预测
- 2024年食品行业食品安全管理体系认证合同
- 餐厅供货协议合同协议范本模板
- 汽车修理厂承包合同模板
- 输变电工程监督检查标准化清单-质监站检查
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 化工企业重大事故隐患判定标准培训考试卷(后附答案)
- 工伤赔偿授权委托书范例
- 工程变更履历表
- 煤矿岗位标准化作业流程
- 唯物史观课件
- 信息资源管理(马费成-第三版)复习重点
- 邮轮外部市场营销类型
- GB/T 42460-2023信息安全技术个人信息去标识化效果评估指南
评论
0/150
提交评论