版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页江西省宜春市名校2024年数学九年级第一学期开学监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数y=中自变量x的取值范围是()A.x>2 B.x≤2 C.x≥2 D.x≠22、(4分)为加快5G网络建设,某移动通信公司在山顶上建了一座5G信号通信塔AB,山高BE=100米(A,B,E在同一直线上),点C与点D分别在E的两侧(C,E,D在同一直线上),BE⊥CD,CD之间的距离1000米,点D处测得通信塔顶A的仰角是30°,点C处测得通信塔顶A的仰角是45°(如图),则通信塔AB的高度约为()米.(参考数据:,)A.350 B.250 C.200 D.1503、(4分)如图,O是正六边形ABCDEF的中心,下列三角形中可由△OBC平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF4、(4分)下列说法:①对角线互相垂直的四边形是菱形;②矩形的对角线垂直且互相平分;③对角线相等的四边形是矩形;④对角线相等的菱形是正方形;⑤邻边相等的矩形是正方形.其中正确的是()A.个 B.个 C.个 D.个5、(4分)用正三角形和正六边形镶嵌,若每一个顶点周围有m个正三角形、n个正六边形,则m,n满足的关系式是()A.2m+3n=12 B.m+n=8 C.2m+n=6 D.m+2n=66、(4分)如图,这组数据的组数与组距分别为()A.5,9 B.6,9C.5,10 D.6,107、(4分)在平行四边形ABCD中,数据如图,则∠D的度数为()A.20° B.80° C.100° D.120°8、(4分)如图,D、E分别是AB、AC的中点,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DEC.CF<BD D.EF>DE二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.10、(4分)比较大小:________.11、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.12、(4分)甲,乙,丙三位同学近次快速阅读模拟比赛成绩平均分均为分,且甲,乙,丙的方差是,则发挥最稳定的同学是__________.13、(4分)计算-的结果是_________.三、解答题(本大题共5个小题,共48分)14、(12分)解不等式组,并在数轴上把解集表示出来.(1)(2)15、(8分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.(1)求一次函数与反比例函数的解析式;(2)点C(-1,0)是轴上一点,求△ABC的面积.16、(8分)如图,DB∥AC,且DB=AC,E是AC的中点.(1)求证:四边形BDEC是平行四边形;(2)连接AD、BE,△ABC添加一个条件:,使四边形DBEA是矩形(不需说明理由).17、(10分)本题有许多画法,你不妨试一试:如图所示的是8的正方形网格,A、B两点均在格点上,现请你在下图中分别画出一个以A、B、C、D为顶点的菱形(可包含正方形),要求:(1)C、D也在格点上;(2)只能使用无刻度的直尺;(3)所画的三个菱形互不全等。18、(10分)已知在中,是边上的一点,的角平分线交于点,且,求证:.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若分解因式可分解为,则=______。20、(4分)已知方程组,则x+y的值是____.21、(4分)在▱ABCD中,∠BAD的平分线AE把边BC分成5和6两部分,则▱ABCD的周长为_____.22、(4分)矩形的对角线与相交于点,,,分别是,的中点,则的长度为________.23、(4分)甲、乙两车从地出发到地,甲车先行半小时后,乙车开始出发.甲车到达地后,立即掉头沿着原路以原速的倍返回(掉头的时间忽略不计),掉头1个小时后甲车发生故障便停下来,故障除排除后,甲车继续以加快后的速度向地行驶.两车之间的距离(千米)与甲车出发的时间(小时)之间的部分函数关系如图所示.在行驶过程中,甲车排除故障所需时间为______小时.二、解答题(本大题共3个小题,共30分)24、(8分)解不等式组:.25、(10分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.26、(12分)在6.26国际禁毒日到来之际,某市教委为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛,某校七年级、八年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分析,成绩如下:七年级688810010079948985100881009098977794961009267八年级69979169981009910090100998997100999479999879(1)根据上述数据,将下列表格补充完成.(整理、描述数据):分数段七年级人数2______________________12八年级人数22115(分析数据):样本数据的平均数、中位数如下表:年级平均数中位数七年级90.193八年级92.3___________(得出结论):(2)你认为哪个年级掌握禁毒知识的总体水平较好,从两个方面说明你的理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选B.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.2、B【解析】
设AB=x米,则AE=(100+x)米,然后利用特殊角的三角函数值表示出DE,EC,最后利用CD=DE+EC=1000即可求出x的值.【详解】设AB=x米,则AE=(100+x)米,在Rt△AED中,∵,则DE==(100+x),在Rt△AEC中,∠C=45°,∴CE=AE=100+x,由题意得,(100+x)+(100+x)=1000,解得x=250,即AB=250米,故选:B.本题主要考查解直角三角形,掌握特殊角的三角函数值是解题的关键.3、C【解析】
利用正六边形的性质得到图中的三角形都为全等的等边三角形,然后利用平移的性质可对各选项进行判断.【详解】解:∵O是正六边形ABCDEF的中心,∴AD∥BC,AF∥CD∥BE,∴△OAF沿FO方向平移可得到△OBC.故选:C.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.4、B【解析】
利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.【详解】解:①对角线互相垂直的四边形不一定是菱形,故①错误;
②矩形的对角线相等且互相平分,故②错误;
③对角线相等的四边形不一定是矩形,故③错误;
④对角线相等的菱形是正方形,故④正确,
⑤邻边相等的矩形是正方形,故⑤正确
故选B.本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.5、D【解析】
正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为310°.若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌.【详解】正多边形的平面镶嵌,每一个顶点处的几个角之和应为310度,而正三角形和正六边形内角分别为10°、120°,根据题意可知10°×m+120°×n=310°,化简得到m+2n=1.故选D.本题考查了平面镶嵌的条件,熟练掌握在每一个顶点处的几个角的和为310度是解题的关键.6、D【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.【详解】解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,故选:D.考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.7、B【解析】
依据平行四边形的性质可得5x+4x=180°,解得x=20°,则∠D=∠B=80°.【详解】∵四边形ABCD是平行四边形,∴AD∥BC.∴5x+4x=180°,解得x=20°.∴∠D=∠B=4×20°=80°.故选B.本题主要考查了平行四边形的性质:邻角互补.同时考查了方程思想.8、B【解析】
首先根据E是AC的中点得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.【详解】∵E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∴△ADE≌△CFE(AAS),∴DE=FE.故选B.本题考查了三角形中位线定理和全等三角形的判定与性质,解答本题的关键是根据中位线定理和平行线的性质得出AE=EC、∠ADE=∠F,判定三角形的全等.二、填空题(本大题共5个小题,每小题4分,共20分)9、2-2【解析】
解:∵=,原式故答案为:10、<【解析】试题解析:∵∴∴11、1分米或分米.【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.【详解】2是斜边时,此直角三角形斜边上的中线长=×2=1分米,2是直角边时,斜边=,此直角三角形斜边上的中线长=×分米,综上所述,此直角三角形斜边上的中线长为1分米或分米.故答案为1分米或分米.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.12、丙【解析】
方差反应了一组数据的波动情况,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定,据此进一步判断即可.【详解】∵,,,∴丙同学的方差最小,∴发挥最稳定的同学是丙,故答案为:丙.本题主要考查了方差的意义,熟练掌握相关概念是解题关键.13、2【解析】
先利用算术平方根和立方根进行化简,然后合并即可.【详解】解:原式=4-2=2故答案为:2本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1),数轴见解析;(2),数轴见解析【解析】
(1)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可,(2)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可.【详解】解:(1)解不等式2x-6<3x得:x>-6,解不等式得:x≤13,∴不等式组的解集为:,不等式组的解集在数轴上表示如下:(2)解不等式,解得:x,解不等式5x-1<3(x+1),解得:x<2,即不等式组的解集为:,不等组的解集在数轴上表示如下:本题考查解一元一次不等式组和在数轴上表示不等式的解集,正确掌握解一元一次不等式组的方法是解题的关键.15、(1),;(2).【解析】
(1)把A点坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再求出B点坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;(2)由面积的和差关系可求解.【详解】(1)∵点A(﹣3,2)在反比例函数y(x<0)的图象上,∴m=﹣3×2=﹣6,∴反比例函数解析式为:y.∵点B(n,4)在反比例函数y(x<0)的图象,∴n,∴点B(,4).∵点A,点B在一次函数y=kx+b的图象上,∴,解得:,∴一次函数解析式为:yx+6;(2)设一次函数与x轴交于点D.在yx+6中,令y=0,解得:x=-4.1.∵C(-1,0),∴CD=3.1,∴S△ABC=S△DBC-S△ADC==.本题考查了一次函数和反比例函数的交点问题的应用,三角形的面积,用待定系数法求函数的图象,主要考查学生的计算能力,题目比较好,难度适中.16、(1)见解析;(2)AB=BC.【解析】
(1)证明DB=EC.DB∥EC即可;(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【详解】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB=EC.又∵DB∥EC,∴四边形DBCE是平行四边形.(2)如图,连接AD,BE,添加AB=BC.
理由:∵DB∥AE,DB=AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.故答案为:AB=BC.此题考查了平行四边形的判定与矩形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.17、见解析【解析】
直接利用菱形的定义得出符合题意的图形即可.【详解】解:由题知,再根据四边相等的四边形为菱形,作出其他边即可,如下图所示:此题主要考查了应用设计与作图以及菱形的性质,正确掌握菱形的性质是解题关键.18、证明见解析.【解析】
根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.【详解】∵平分,∴,∵,∴,∵,,∴,∵,,∴,∴,即:,∵,∴.本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、-7【解析】
将(x+3)(x+n)的形式转化为多项式,通过对比得出m、n的值,即可计算得出m+n的结果.【详解】(x+3)(x+n)=+(3+n)x+3n,对比+mx-15,得出:3n=﹣15,m=3+n,则:n=﹣5,m=﹣2.所以m+n=﹣2﹣5=﹣7.本题考查了因式分解,解题关键在于通过对比两个多项式,得出m、n的值.20、﹣1.【解析】
根据题意,①-②即可得到关于x+y的值【详解】,①﹣②得到:﹣3x﹣3y=6,∴x+y=﹣1,故答案为﹣1.此题考查解二元一次方程组,难度不大21、32或1【解析】
根据平行四边形的性质可得∠DAE=∠AEB,再由角平分线的性质和等腰三角形的性质可得AB=BE,然后再分两种情况计算即可.【详解】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=5,EC=6时,平行四边形ABCD的周长为:2(AB+BC)=2×(5+5+6)=32;②当BE=6,EC=5时,平行四边形ABCD的周长为:2(AB+BC)=2×(6+6+5)=1.故答案为32或1.平行四边形的性质及等腰三角形的性质、角平分线的性质是本题的考点,根据其性质求得AB=BE是解题的关键.22、1【解析】
分析题意,知道,分别是,的点,则可知是△AOD的中位线;结合中位线的性质可知=OA,故只要求出OA的长即可;已知矩形的一条对角线长,则可得出AC的长,进而得出OA的长,便可得解.【详解】∵四边形ABCD是矩形,∴BD=AC=4,∴OA=2.∵,是DO、AD的中点,∴是△AOD的中位线,∴=OA=1.故答案为:1此题考查中位线的性质,矩形的性质,解题关键在于利用中位线性质求解23、【解析】
画出符合题意的行程信息图,利用图中信息列方程组求出甲乙的速度,再构建方程解决问题即可.【详解】解:设去时甲的速度为km/h,乙的速度为km/h,则有,解得,∴甲返回时的速度为km/h,设甲修车的时间为小时,则有,解得.故答案为.本题考查函数图象问题,解题的关键是读懂图象信息,还原行程信息图,灵活运用所学知识解决问题.二、解答题(本大题共3个小题,共30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中地理必修•第1册期中试卷及答案-中图版-2024-2025学年
- 软件设计师(基础知识、应用技术)合卷软件资格考试(中级)试题与参考答案
- 酒店委托经营合同
- 个人装修合同样本
- 测试岗位招聘面试题与参考回答(某大型集团公司)
- 2024年度电子商务行业竞争调查与分析合同3篇
- 二零二四年文化交流与合作合同
- 2024年二手房屋按揭贷款还款合同2篇
- 2024版工程勘察合同书2篇
- 2024房产交易定金支付方式合同3篇
- 项目九-宋代造船技术的进展与(共37张PPT)
- Java程序设计全套课件完整版
- 中国文学常识课件
- 计算机图形学历年期末题大三上必考知识点哦
- 某县大河镇生猪交易市场建设项目可行性研究报告
- 华北理工大学中药学课程教学大纲(48学时-耿增岩)
- 手术讲解模板臀位外倒转术
- 人体衰老和抗衰老研究讲座课件
- 医院感染管理组织架构图
- (完整版)国家会计领军人才题型及经验分享
- 高中地理 必修二 世界人口的分布 人口分布(第一课时) 课件
评论
0/150
提交评论