安徽省皖江名校2025届数学高二上期末监测模拟试题含解析_第1页
安徽省皖江名校2025届数学高二上期末监测模拟试题含解析_第2页
安徽省皖江名校2025届数学高二上期末监测模拟试题含解析_第3页
安徽省皖江名校2025届数学高二上期末监测模拟试题含解析_第4页
安徽省皖江名校2025届数学高二上期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省皖江名校2025届数学高二上期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.42.数列的通项公式是()A. B.C. D.3.在直三棱柱中,侧面是边长为的正方形,,,且,则异面直线与所成的角为()A. B.C. D.4.下列说法正确的是()A.“若,则,全为0”的否命题为“若,则,全不为0”B.“若方程有实根,则”的逆命题是假命题C.命题“,”的否定是“,”D.“”是“直线与直线平行”的充要条件5.已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是A. B.C. D.6.已知斜率为1的直线与椭圆相交于A、B两点,O为坐标原点,AB的中点为P,若直线OP的斜率为,则椭圆C的离心率为()A. B.C. D.7.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.188.若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A. B.C. D.29.过两点和的直线的斜率为()A. B.C. D.10.我国古代铜钱蕴含了“外圆内方”“天地合一”的思想.现有一铜钱如图,其中圆的半径为r,正方形的边长为,若在圆内随即取点,取自阴影部分的概率是p,则圆周率的值为()A. B.C. D.11.已知等差数列前项和为,若,则的公差为()A.4 B.3C.2 D.112.对于函数,下列说法正确的是()A.的单调减区间为B.设,若对,使得成立,则C.当时,D.若方程有4个不等的实根,则二、填空题:本题共4小题,每小题5分,共20分。13.若等比数列满足,则的前n项和____________14.已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=4,则|CD|=_____________.15.若是直线外一点,为线段的中点,,,则______16.与双曲线有共同的渐近线,并且经过点的双曲线方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.18.(12分)如图,C是以为直径的圆上异于的点,平面平面分别是的中点.(1)证明:平面;(2)若直线与平面所成角的正切值为2,求锐二面角的余弦值.19.(12分)已知甲组数据的茎叶图如图所示,其中数据的整数部分为茎,数据的小数部分(仅一位小数)为叶,例如第一个数据为5.3(1)求:甲组数据的平均值、方差、中位数;(2)乙组数据为,且甲、乙两组数据合并后的30个数据的平均值为,方差为,求:乙组数据的平均值和方差,写出必要的计算步骤.参考公式:平均值,方差20.(12分)已知动圆过点,且与直线:相切(1)求动圆圆心的轨迹方程;(2)若过点且斜率的直线与圆心的轨迹交于两点,求线段的长度21.(12分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.22.(10分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.2、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.3、C【解析】分析得出,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成的角.【详解】由题意可知,,因为,,则,,因为平面,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则点、、、,,,,因此,异面直线与所成的角为.故选:C.4、D【解析】A选项,全为0的否定是不全为0;B选项,先写出逆命题,再判断出真假;C选项,命题“,”的否定是“,”,D选项,根据直线平行,列出方程和不等式,求出,进而判断出充要条件.【详解】“若,则,全为0”的否命题为“若,则,不全为0”,A错误;若方程有实根,则的逆命题是若,则方程有实根,由得:,其中,所以若,则方程有实根是真命题,故B错误;命题“,”的否定是“,”,C错误;直线与直线平行,需要满足且,解得:,所以“”是“直线与直线平行”的充要条件,D正确;故选:D5、B【解析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,,命题为真,根据复合命题的真假关系,即可得出结论.【详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,,方程表示椭圆命题是真命题,则是真命题.故选:B.【点睛】本题考查复合命题真假的判断,属于基础题.6、B【解析】这是中点弦问题,注意斜率与椭圆a,b之间的关系.【详解】如图:依题意,假设斜率为1的直线方程为:,联立方程:,解得:,代入得,故P点坐标为,由题意,OP的斜率为,即,化简得:,,,;故选:B.7、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B8、A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.9、D【解析】应用两点式求直线斜率即可.【详解】由已知坐标,直线的斜率为.故选:D10、B【解析】根据圆和正方形的面积公式结合几何概型概率公式求解即可.【详解】由可得故选:B11、A【解析】由已知,结合等差数列前n项和公式、通项公式列方程组求公差即可.详解】由题设,,解得.故选:A12、B【解析】函数,,,,,利用导数研究函数的单调性以及极值,画出图象A.结合图象可判断出正误;B.设函数的值域为,函数,的值域为.若对,,使得成立,可得.分别求出,,即可判断出正误C.由函数在单调递减,可得函数在单调递增,由此即可判断出正误;D.方程有4个不等的实根,则,且时,有2个不等的实根,由图象即可判断出正误;【详解】函数,,,,可得函数在上单调递减,在上单调递减,在上单调递增,当时,,由此作出函数的大致图象,如图示:A.由上述分析结合图象,可得A不正确B.设函数的值域为,函数,的值域为,对,,.,,由,若对,,使得成立,则,所以,因此B正确C.由函数在单调递减,可得函数在单调递增,因此当时,,即,因此C不正确;D.方程有4个不等的实根,则,且时,有2个不等的实根,结合图象可知,因此D不正确故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:14、【解析】先求出圆心和半径,由于半径为2,弦|AB|=4,所以可知直线过圆心,从而得,求出,得到直线方程且倾斜角为135°,进而可求出|CD|【详解】圆,圆心(1,2),半径r=2,∵|AB|=4,∴直线过圆心(1,2),∴,∴,∴直线,倾斜角为135°,∵过A,B分别做l的垂线与x轴交于C,D两点,∴.故答案为:4【点睛】此题考查直线与圆的位置关系,考查两直线的位置关系,考查转化思想和计算能力,属于基础题15、【解析】根据题意得到,进而得到,求得的值,即可求解.【详解】因为为线段的中点,所以,所以,又因为,所以,所以故答案为:.16、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由结合等差数列的定义证明即可;(2)由结合错位相减法得出前项和.【小问1详解】在两边同时除以,得:,,故数列是以1为首项,1为公差的等差数列;【小问2详解】由(1)得:,,①②①②得:所以.18、(1)证明见解析(2)【解析】(1)由分别是的中点,得到,在由是圆的直径,所以,结合面面垂直的性质定理,证得面,即可证得面;(2)以C为坐标原点,为x轴,为y轴,过C垂直于面直线为z轴,建立空间直角坐标系,分别求得平面与平面的一个法向量,结合向量的夹角公式,即可求解.【小问1详解】证明:在,因为分别是的中点,所以,又因为是圆的直径,所以,又由平面平面,平面平面,且平面,所以面,因为,所以面.【小问2详解】解:由(1)知面,所以直线与平面所成角为,由题意知,以C为坐标原点,为x轴,为y轴,过C垂直于面的直线为z轴,建立空间直角坐标系,如图所示,可得,则,,设面的法向量为,则,取,可得,所以,设面的法向量为,则,取,可得,所以,则,所以锐二面角的余弦值为.19、(1),,;(2),.【解析】(1)根据茎叶图求平均值,再由方差与均值的关系求,将茎叶图中的数据从小到大排列确定中位数M.(2)由甲乙平均数及(1)的结果列方程求乙组数据的平均值,再由方差与均值的关系列方程组求出,进而求方差.【小问1详解】,∴,由茎叶图知:数据从小到大排列为∴.【小问2详解】由题意,,又,因此.20、(1);(2).【解析】(1)由题意分析圆心符合抛物线定义,然后求轨迹方程;(2)直接联立方程组,求出弦长.【详解】解:(1)圆过点,且与直线相切点到直线的距离等于由抛物线定义可知点的轨迹是以为焦点、以为准线的抛物线,依题意,设点的轨迹方程为,则,解得,所以,动圆圆心的轨迹方程是(2)依题意可知直线,设联立,得,则,所以,线段的长度为【点睛】(1)待定系数法、代入法可以求二次曲线的标准方程;(2)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.21、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,平面FAC的一个法向量为,代入向量的夹角公式,即可得到答案;【小问1详解】∵ABCD为菱形,∴,设AC与BD的交点为O,则OE为的中位线,∴.由题意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小问2详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论