云南省宁蒗县一中2025届高三数学第一学期期末学业水平测试试题含解析_第1页
云南省宁蒗县一中2025届高三数学第一学期期末学业水平测试试题含解析_第2页
云南省宁蒗县一中2025届高三数学第一学期期末学业水平测试试题含解析_第3页
云南省宁蒗县一中2025届高三数学第一学期期末学业水平测试试题含解析_第4页
云南省宁蒗县一中2025届高三数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省宁蒗县一中2025届高三数学第一学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则()A. B. C. D.2.已知实数x,y满足,则的最小值等于()A. B. C. D.3.若直线的倾斜角为,则的值为()A. B. C. D.4.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.5.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.的展开式中的常数项为()A.-60 B.240 C.-80 D.1807.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.8.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.39.已知随机变量服从正态分布,且,则()A. B. C. D.10.当时,函数的图象大致是()A. B.C. D.11.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.12.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,,,且,则此三棱锥外接球表面积的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:满意度评分分组合计高一1366420高二2655220根据评分,将家长的满意度从低到高分为三个等级:满意度评分评分70分70评分90评分90分满意度等级不满意满意非常满意假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件:“高一家长的满意度等级高于高二家长的满意度等级”,则事件发生的概率为__________.14.已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.15.若,则__________.16.设变量,,满足约束条件,则目标函数的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.18.(12分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.(1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.19.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.20.(12分)已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.21.(12分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosB(1)求b的值;(2)若cosB+3sin22.(10分)(江苏省徐州市高三第一次质量检测数学试题)在平面直角坐标系中,已知平行于轴的动直线交抛物线:于点,点为的焦点.圆心不在轴上的圆与直线,,轴都相切,设的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切于点,过且垂直于的直线为,直线,分别与轴相交于点,.当线段的长度最小时,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.2、D【解析】

设,,去绝对值,根据余弦函数的性质即可求出.【详解】因为实数,满足,设,,,恒成立,,故则的最小值等于.故选:.【点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平.3、B【解析】

根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值.【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键.4、A【解析】

求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,

过点P作PM垂直于准线,M为垂足,

由抛物线的定义可得|PF|=|PM|=x+1,

记∠KPF的平分线与轴交于

根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.5、C【解析】

根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.6、D【解析】

求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.7、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.8、C【解析】

否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.9、C【解析】

根据在关于对称的区间上概率相等的性质求解.【详解】,,,.故选:C.【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.10、B【解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.11、B【解析】

计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.12、B【解析】

根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值.【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,∴此三棱锥的外接球即为长方体的外接球,且球半径为,∴三棱锥外接球表面积为,∴当且仅当,时,三棱锥外接球的表面积取得最小值为.故选B.【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题.二、填空题:本题共4小题,每小题5分,共20分。13、0.42【解析】

高一家长的满意度等级高于高二家长的满意度等级有三种情况,分别求出三种情况的概率,再利用加法公式即可.【详解】由已知,高一家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高二家长满意等级为不满意的概率为,满意的概率为,非常满意的概率为,高一家长的满意度等级高于高二家长的满意度等级有三种情况:1.高一家长满意,高二家长不满意,其概率为;2.高一家长非常满意,高二家长不满意,其概率为;3.高一家长非常满意,高二家长满意,其概率为.由加法公式,知事件发生的概率为.故答案为:【点睛】本题考查独立事件的概率,涉及到概率的加法公式,是一道中档题.14、【解析】

由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点抛物线方程为,准线方程为过作准线的垂线,垂足为,则设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的方程为,代入得:,解得:或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.15、【解析】

由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【详解】,得,在等式两边平方得,解得.故答案为:.【点睛】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.16、7【解析】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,1),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值∴z最小值=F(2,1)=7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,;单调递减区间为;(2),;(3)证明见解析.【解析】

(1)由的正负可确定的单调区间;(2)利用基本不等式可求得时,取得最小值,由导数的几何意义可知,从而求得,求得切点坐标后,可得到切线方程;(3)由极值点的定义可知是的两个不等正根,由判别式大于零得到的取值范围,同时得到韦达定理的形式;化简为,结合的范围可证得结论.【详解】(1)由题意得:的定义域为,当时,,,当和时,;当时,,的单调递增区间为,;单调递减区间为.(2),所以(当且仅当,即时取等号),切线的斜率存在最小值,,解得:,,即切点为,从而切线方程,即:.(3),分别在,处取得极值,,是方程,即的两个不等正根.则,解得:,且,.,,,即不等式成立.【点睛】本题考查导数在研究函数中的应用,涉及到利用导数求解函数的单调区间、导数几何意义的应用、利用导数证明不等式等知识;本题中证明不等式的关键是能够通过极值点的定义将问题转变为一元二次方程根的分布问题.18、(1);(2)证明见解析;(3)是,理由见解析.【解析】

(1)根据两个曲线的焦点相同,得到,再根据与的公共弦长为得出,可求出和的值,进而可得出曲线的方程;(2)设点,根据导数的几何意义得到曲线在点处的切线方程,求出点的坐标,利用向量的数量积得出,则问题得以证明;(3)设直线,直线,、、,推导出以及,求出和,通过化简计算可得出为定值,进而可得出结论.【详解】(1)由知其焦点的坐标为,也是椭圆的一个焦点,,①又与的公共弦的长为,与都关于轴对称,且的方程为,由此易知与的公共点的坐标为,,②联立①②,得,,故的方程为;(2)如图,,由得,在点处的切线方程为,即,令,得,即,,而,于是,因此是锐角,从而是钝角.故直线绕点旋转时,总是钝角三角形;(3)设直线,直线,、、,则,设向量和的夹角为,则的面积为,由,可得,同理可得,故有.又,故,则,因此,的面积为定值.【点睛】本题考查了圆锥曲线的和直线的位置与关系,考查钝角三角形的判定以及三角形面积为定值的求解,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于斜率的方程,计算量大,属于难题.19、(1)详见解析;(2)详见解析.【解析】

(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.20、(1)见解析;(2)(﹣∞,0]【解析】

(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.【详解】(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)内递增,在(﹣,0)内递减,在(0,+∞)内递增,∴f(x)的极大值为,∴当x<0时,f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,则g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,则h(x)在(0,+∞)上单调递增,且x→0+时,h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,当x∈(x0,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴实数k的取值范围是(﹣∞,0].【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1)b=32【解析】试题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论