版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省资阳市2025届高一数学第一学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)2.设函数,若关于的方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.3.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.84.函数的定义域为()A B.C. D.5.若角,均为锐角,,,则()A. B.C. D.6.将化为弧度为A. B.C. D.7.若,,,则a,b,c的大小关系为()A. B.C. D.8.已知命题:“,方程有解”是真命题,则实数a的取值范围是()A. B.C. D.9.若函数在定义域上的值域为,则()A. B.C. D.10.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数满足,则值为_____.12.函数的零点个数为_________.13.函数在区间上单调递增,则实数的取值范围_______.14.在区间上随机地取一个实数,若实数满足的概率为,则________.15.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是___________.16.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象在轴右侧的第一个最高点和第一个最低点的坐标分别为和.(1)求函数的解析式;(2)求的值18.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.19.已知函数.(1)若函数的图象关于直线x=对称,且,求函数的单调递增区间.(2)在(1)的条件下,当时,函数有且只有一个零点,求实数b的取值范围.20.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.21.在平面内给定三个向量(1)求满足的实数m,n的值;(2)若向量满足,且,求向量的坐标
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设点,根据点到两点距离相等,列出方程,即可求解.【详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.2、A【解析】根据图象可得:,,,.,则.令,,求函数的值域,即可得出结果.【详解】画出函数的大致图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,,则.令,,而函数在单调递增,所以,则.故选:A.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.3、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B4、D【解析】由函数解析式可得关于自变量的不等式组,其解集为函数的定义域.【详解】由题设可得:,故,故选:D.5、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B6、D【解析】根据角度制与弧度制的关系求解.【详解】因为,所以.故选:D.7、A【解析】根据指数函数和对数函数的单调性进行判断即可.【详解】∵,∴,∴,,,∴.故选:A8、B【解析】由根的判别式列出不等关系,求出实数a的取值范围.【详解】“,方程有解”是真命题,故,解得:,故选:B9、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A10、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求得后,由可得结果.【详解】,,.故答案为:.12、3【解析】作出函数图象,根据函数零点与函数图象的关系,直接判断零点个数.【详解】作出函数图象,如下,由图象可知,函数有3个零点(3个零点分别为,0,2).故答案为:313、【解析】由对数真数大于零可知在上恒成立,利用分离变量的方法可求得,此时结合复合函数单调性的判断可知在上单调递增,由此可确定的取值范围.【详解】由题意知:在上恒成立,在上恒成立,在上单调递减,,;当时,单调递增,又此时在上单调递增,在上单调递增,满足题意;实数的取值范围为.故答案为:.14、1【解析】利用几何概型中的长度比即可求解.【详解】实数满足,解得,,解得,故答案为:1【点睛】本题考查了几何概率的应用,属于基础题.15、【解析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果.【详解】由弧长公式可得,可得,所以,由和线段所围成的弓形的面积为,而勒洛三角形由三个全等的弓形以及一个正三角形构成,因此,该勒洛三角形的面积为.故答案为:.16、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由已知得和,利用即可求出函数的解析式;(2)由已知得的值,代入,即可得的值试题解析:(1)解:由题意可得,1分,3分∴4分由得,5分∴.6分(2)解:∵点是函数在轴右侧的第一个最高点,∴.7分∴.8分∴9分10分11分12分考点:1、三角函数的图象与性质;2、两角和的正弦公式18、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解19、(1)(2)或【解析】(1)先求得函数的解析式,再整体代入法去求函数单调递增区间即可;(2)依据函数的单调性及零点个数列不等式组即可求得实数b的取值范围.【小问1详解】由,可得又函数的图象关于直线x=对称,则,则故由,可得则函数的单调递增区间为【小问2详解】由(1)可知当时,,由得,由得则函数在上单调递增,在上单调递减,由函数有且只有一个零点,可得或,解得或20、(1)(2)【解析】(1)根据题意可得,从而可求得,再根据正弦函数的性质结合整体思想即可得出答案;(2)求出平移后的函数的解析式,再根据正余弦函数的奇偶性即可得出答案.【小问1详解】解:因为函数的图象相邻两条对称轴之间的距离为,所以,所以,所以,所以,当时,,所以当时,函数取得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北第二师范学院《企业形象设计》2021-2022学年第一学期期末试卷
- 2024家庭装修合同范本
- 2024城市公路护栏施工合同
- 湖北大学知行学院《会计职业道德》2023-2024学年第一学期期末试卷
- 《奥运游中国模板》课件
- 外伤性胰腺癌护理查房
- 二年级下册语文必背内容(古诗、课文、日积月累)
- 国家自然科学基金条例培训2024
- 2024居间合同的法律规定
- 《泪器病及治疗》课件
- 三年级语文上册第八单元集体备课+教材解读+解学设计课件
- 部编版二年级语文(上册)课内阅读专项训练题(含答案)
- IEC60335-1-2020中文版-家用和类似用途电器的安全第1部分:通用要求(中文翻译稿)
- 妇幼健康状况分析报告
- 有机物脱水反应的规律及类型
- 骨科患者的护理评估课件
- 六年级上册数学课件-7.1 百分数的认识 ︳青岛版 (共17张PPT)
- 云教版七年级上册劳技第一章第二节衣服的洗涤与熨烫课件
- 足球竞赛规则裁判法(共56张PPT)
- 监理平行检查记录表格模板
- 水利工程管理单位定岗标准(试点)
评论
0/150
提交评论