2025届甘肃省兰州市第五十五中学高二数学第一学期期末考试试题含解析_第1页
2025届甘肃省兰州市第五十五中学高二数学第一学期期末考试试题含解析_第2页
2025届甘肃省兰州市第五十五中学高二数学第一学期期末考试试题含解析_第3页
2025届甘肃省兰州市第五十五中学高二数学第一学期期末考试试题含解析_第4页
2025届甘肃省兰州市第五十五中学高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省兰州市第五十五中学高二数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间直角坐标系中的点,,,则点P到直线AB的距离为()A. B.C. D.2.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b23.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.4.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm),那么该壶的容量约为()A.100 B.C.300 D.4005.已知数列中,,则()A.2 B.C. D.6.设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么7.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.38.设,,且,则等于()A. B.C. D.9.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.10.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.11.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.812.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为_________14.某市开展“爱我内蒙,爱我家乡”摄影比赛,9位评委给参赛作品A打出的分数如茎叶图所示,记分员算得平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______15.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.他们根据沙粒或小石子所排列的形状把数分成许多类,下图中第一行的称为三角形数,第二行的称为五边形数,则三角形数的第10项为__________,五边形数的第项为__________.16.(建三江)函数在处取得极小值,则=___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值18.(12分)如图,在四棱锥S−ABCD中,底面ABCD为矩形,,AB=2,,平面,,,E是SA的中点(1)求直线EF与平面SCD所成角的正弦值;(2)在直线SC上是否存在点M,使得平面MEF平面SCD?若存在,求出点M的位置;若不存在,请说明理由19.(12分)某市对新形势下的中考改革工作进行了全面的部署安排.中考录取科目设置分为固定赋分科目和非固定赋分科目,固定赋分科目(语文、数学、英语、物理、体育与健康)按卷面分计算;非固定赋分科目(化学、生物、道德与法治、历史、地理)按学生在该学科中的排名进行等级赋分,即根据改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A,,,,,,,共个等级.参照正态分布原则,确定各等级人数所占比例分别为,,,,,,,.等级考试科目成绩计入考生总成绩时,将A至等级内的考生原始成绩,依照等比例转换法则,分别转换到,,,,,,,八个分数区间,得到考生的等级成绩.该市学生的中考化学原始成绩制成频率分布直方图如图所示:(1)求图中的值;(2)估计该市学生中考化学原始成绩不少于多少分才能达到等级及以上(含等级)?(3)由于中考改革后学生各科原始成绩不再返回学校,只告知各校参考学生的各科平均成绩及方差.已知某校初三共有名学生参加中考,为了估计该校学生的化学原始成绩达到等级及以上(含等级)的人数,将该校学生的化学原始成绩看作服从正态分布,并用这名学生的化学平均成绩作为的估计值,用这名学生化学成绩的方差作为的估计值,计算人数(结果保留整数)附:,,.20.(12分)(1)求函数的单调区间.(2)用向量方法证明:已知直线l,a和平面,,,,求证:.21.(12分)已知函数.(1)若在上单调递增,求的取值范围;(2)若在上存在极值点,证明:.22.(10分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由向量在向量上的投影及勾股定理即可求.【详解】,0,,,1,,,,,,在上的投影为,则点到直线的距离为.故选:D2、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.3、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B4、B【解析】根据圆台的体积等于两个圆锥的体积之差,即可求出【详解】设大圆锥的高为,所以,解得故故选:B【点睛】本题主要考查圆台体积的求法以及数学在生活中的应用,属于基础题5、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.6、C【解析】AB.利用两平面的位置关系判断;CD.利用面面平行的判定定理判断;【详解】A.如果,,n∥β,那么α,β相交或平行;故错误;B.如果,,,那么α,β垂直,故错误;C.如果m∥n,,则,又,那么α∥β,故C正确;D错误,故选:C7、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.8、A【解析】由空间向量垂直的坐标表示可求得实数的值.【详解】由已知可得,解得.故选:A.9、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于10、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.11、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C12、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】将代数式变形为,写出展开式的通项,令的指数为,求得参数的值,代入通项即可求解.【详解】由展开式的通项为,令,得展开式中的系数为.由展开式的通项为,令,得展开式中的系数为.所以的展开式中的系数为.故答案为:.14、1【解析】由平均数列出方程,求出x的值.【详解】由题意得:,解得:.故答案为:115、①.②.【解析】对于三角形数,根据图形寻找前后之间的关系,从而归纳出规律利用求和公式即得,对于五边形数根据图形寻找前后之间的关系,然后利用累加法可得通项公式.【详解】由题可知三角形数的第1项为1,第2项为3=1+2,第3项为6=1+2+3,第4项为10=1+2+3+4,,因此,第10项为;五边形数的第1项为,第2项为,第3项为,第4项为,…,因此,,所以当时,,当时也适合,故,即五边形数的第项为.故答案为:55;.16、【解析】由,令,解得或,且时,;时,;时,,所以当时,函数取得极小值考点:导数在函数中的应用;极值的条件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为点M到直线的距离,为,所以四边形ABDE面积为,令得,由对勾函数性质可知:当且仅当,即时,四边形ABDE面积取得最大值为6.18、(1)(2)存在,M与S重合【解析】(1)分别取AB,BC中点M,N,易证两两互相垂直,以为正交基底,建立空间直角坐标系,先求得平面SCD的一个法向量,再由求解;(2)假设存在点M,使得平面MEF平面SCD,再求得平面MEF的一个法向量,然后由求解.小问1详解】解:分别取AB,BC中点M,N,则,又平面则两两互相垂直,以为正交基底,建立如图所示的空间直角坐标系,,所以,设平面SCD的一个法向量为,,,则,,直线EF与平面SBC所成角的正弦值为.【小问2详解】假设存在点M,使得平面MEF平面SCD,,,设平面MEF的一个法向量,,令,则,平面MEF平面SCD,,,存在点,此时M与S重合.19、(1)(2)85(3)23【解析】(1)根据所有矩形面积之和等于1可得;(2)先根据矩形面积之和判断达到等级的最低分数为x所在区间,然后根据矩形面积之和等于0.9可得;(3)由题知,所以由可得.【小问1详解】由得【小问2详解】由题意可知,要使等级达到等级及以上,则成绩需超过的学生.因为,记达到等级的最低分数为x,则,则由,解得所以该市学生中考化学原始成绩不少于85分才能达到等级及以上.【小问3详解】由题知,因为所以故该校学生的化学原始成绩达到等级及以上的人数大约为人.20、(1)的单调减区间为和,单调增区间为;(2)证明见解析.【解析】(1)求出导函数,由得增区间,由得减区间;(2)说明直线方向向量与平行的法向量垂直后可得【详解】(1)解:定义域为R,,,解得,.当或时,,当时,.所以的单调减区间为和,单调增区间为.(2)证明:在直线a上取非零向量,因为,所以是直线l的方向向量,设是平面的一个法向量,因为,所以.又,所以.21、(1)(2)证明见解析【解析】(1)由题得,在,上为单调递增的函数,在,上恒成立,分类讨论,再次利用导数研究函数的最值即可;(2)由(1)可知,在存在极值点,则且,求得,再两次求导即可得结论.【小问1详解】由题得,在,上为单调递增的函数,在,上恒成立,设,当时,由,得,在,上为增函数,则,在,上恒成立,满足命题,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论