山东省德州市齐河县一中2025届数学高二上期末调研试题含解析_第1页
山东省德州市齐河县一中2025届数学高二上期末调研试题含解析_第2页
山东省德州市齐河县一中2025届数学高二上期末调研试题含解析_第3页
山东省德州市齐河县一中2025届数学高二上期末调研试题含解析_第4页
山东省德州市齐河县一中2025届数学高二上期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市齐河县一中2025届数学高二上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,平面,,,,Q是边上的一动点,且直线与平面所成角的最大值为,则三棱锥的外接球的表面积为()A. B.C. D.2.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现用4种不同的颜色(4种颜色全部使用)给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,则不同的涂色方案有()A.24种 B.48种C.72种 D.96种3.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.4.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差5.曲线在处的切线的斜率为()A.-1 B.1C.2 D.36.点到直线的距离是()A. B.C. D.7.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.8.命题:,的否定为()A., B.不存在,C., D.,9.下列命题中,结论为真命题的组合是()①“”是“直线与直线相互垂直”的充分而不必要条件②若命题“”为假命题,则命题一定是假命题③是的必要不充分条件④双曲线被点平分的弦所在的直线方程为⑤已知过点的直线与圆的交点个数有2个.A.①③④ B.②③④C.①③⑤ D.①②⑤10.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为()A. B.C. D.11.已知空间向量,,且,则的值为()A. B.C. D.12.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.14.已知,,且与的夹角为钝角,则x的取值范围是___.15.根据抛物线的光学性质可知,从抛物线的焦点发出的光线经该抛物线反射后与对称轴平行,一条平行于对称轴的光线经该抛物线反射后会经过抛物线的焦点.如图所示,从沿直线发出的光线经抛物线两次反射后,回到光源接收器,则该光线经过的路程为___________.16.已知命题:,总有.则为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)记数列的前n项和为,已知点在函数的图像上(1)求数列的通项公式;(2)设,求数列的前9项和18.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值19.(12分)已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9(1)求证:无论m为何值,直线l与圆C总相交(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值20.(12分)已知为等差数列,是各项均为正数的等比数列的前n项和,,,,在①;②;③.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择的第一个解答计分)(1)求数列和的通项公式;(2)求数列的前n项和.21.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围22.(10分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由平面,直线与平面所成角的最大时,最小,也即最小,,由此可求得,从而得,得长,然后取外心,作,取H为的中点,使得,则易得,求出的长即为外接球半径,从而可得面积【详解】三棱锥中,平面,直线与平面所成角为,如图所示;则,且的最大值是,,的最小值是,即A到的距离为,,,在中可得,又,,可得;取的外接圆圆心为,作,取H为的中点,使得,则易得,由,解得,,,,由勾股定理得,所以三棱锥的外接球的表面积是.【点睛】本题考查求球的表面积,解题关键是确定球的球心,三棱锥的外接球心在过各面外心且与此面垂直的直线上2、B【解析】根据题意,分2步进行分析区域①、②、⑤和区域③、④的涂色方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:当区域①、②、⑤这三个区域两两相邻,有种涂色的方法;当区域③、④,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域③、④有2种涂色方法,故共有种涂色的方法.故选:B3、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.4、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.5、D【解析】先求解出导函数,然后代入到导函数中,所求导数值即为切线斜率.【详解】因为,所以,所以切线的斜率为.故选:D.6、B【解析】直接使用点到直线距离公式代入即可.【详解】由点到直线距离公式得故选:B7、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B8、D【解析】含有量词的命题的否定方法:先改变量词,然后再否定结论即可【详解】解:命题:,的否定为:,故选:D9、C【解析】求出两直线垂直时m值判断①;由复合命题真值表可判断②;化简不等式结合充分条件、必要条件定义判断③;联立直线与双曲线的方程组成的方程组验证判断④;判定点与圆的位置关系判断⑤作答.【详解】若直线与直线相互垂直,则,解得或,则“”是“直线与直线相互垂直”的充分而不必要条件,①正确;命题“”为假命题,则与至少一个是假命题,不能推出一定是假命题,②不正确;,,则是的必要不充分条件,③正确;由消去y并整理得:,,即直线与双曲线没有公共点,④不正确;点在圆上,则直线与圆至少有一个公共点,而过点与圆相切的直线为,直线不包含,因此,直线与圆相交,有两个交点,⑤正确,所以所有真命题的序号是①③⑤.故选:C10、A【解析】先求得点坐标,然后求得的角平分线所在的直线的方程.【详解】,直线的斜率为,由于直线,与l的夹角相等,则的角平分线所在的直线的斜率为,所以所求直线方程为.故选:A11、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.12、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.二、填空题:本题共4小题,每小题5分,共20分。13、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1714、∪【解析】根据题意得出且与不共线,然后根据向量数量积的定义及向量共线的条件求出x的取值范围.【详解】∵与的夹角为钝角,且与不共线,即,且,解得,且,∴x的取值范围是∪.故答案为:∪.15、12【解析】求出,利用抛物线上的点到焦点的距离等于到准线的距离可得答案.【详解】由得,设,,由抛物线性质,与轴的交点即为抛物线的焦点,,,,所以,所以该光线经过的路程为12.故答案为:12.16、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用的关系可求.(2)利用裂项相消法可求数列的前9项和【小问1详解】由题意知当时,;当时,,适合上式所以【小问2详解】则18、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,利用韦达定理法即证【小问1详解】由题意可知在双曲线C中,,,,解得所以双曲线C的方程为;【小问2详解】证法一:由题可知,设直线,,,由,得,则,,∴,,;当直线的斜率不存在时,,此时.综上,为定值证法二:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,,,,由双曲线方程可得,,,,∵,∴,,证法三:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,∴,,由双曲线方程可得,,则,所以,,,∴为定值19、(1)详见解析(2)m为-时,截得的弦长最小,最小值为2【解析】(1)将直线l变形,可知直线l过定点,证明定点在圆内部;(2)利用垂径定理和弦长公式可得.【详解】(1)证明:直线l变形为m(x-y+1)+(3x-2y)=0令解得,如图所示,故动直线l恒过定点A(2,3)而|AC|==<3(半径)∴点A在圆内,故无论m取何值,直线l与圆C总相交(2)解:由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小,此时kl·kAC=-1,即,∴m=-最小值为故m为-时,直线l被圆C所截得的弦长最小,最小值为2【点睛】考查直线过定点、点与圆的位置关系以及弦长问题,解题的关键是直线系形式的转化.20、(1)无论选择哪个条件答案均为;(2).【解析】(1)先根据题设条件求解,然后根据选择的条件求解;(2)先求,然后利用分组求和的方法求解.【小问1详解】设的公差为,因为,;所以,解得,所以.选①:设的公比为,则;由题意得,因为,所以,解得或(舍);所以.选②:由,当时,,因为,所以;当时,,整理得;即是首项和公比均为2的等比数列,所以.选③:因为,,所以,解得;所以.【小问2详解】由(1)得;所以.21、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论