2025届四川省遂宁第二中学数学高一上期末教学质量检测模拟试题含解析_第1页
2025届四川省遂宁第二中学数学高一上期末教学质量检测模拟试题含解析_第2页
2025届四川省遂宁第二中学数学高一上期末教学质量检测模拟试题含解析_第3页
2025届四川省遂宁第二中学数学高一上期末教学质量检测模拟试题含解析_第4页
2025届四川省遂宁第二中学数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省遂宁第二中学数学高一上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合A={x|<2},B={x|log2x>0},则()A. B.A∩B=C.或 D.2.已知函数为偶函数,且在上单调递增,,则不等式的解集为()A. B.C. D.3.已知集合,集合,则()A.0 B.C. D.4.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则5.如图,在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆的交点为,将绕坐标原点逆时针旋转至,过点作轴的垂线,垂足为.记线段的长为,则函数的图象大致是A. B.C. D.6.函数的零点个数是A.0 B.1C.2 D.37.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)8.表示不超过实数的最大整数,是方程的根,则()A. B.C. D.9.若,,,则有A. B.C. D.10.设,,则的结果为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______12.一个底面积为1的正四棱柱的八个顶点都在同一球面上,若这个正四棱柱的高为,则该球的表面积为__________13.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为___cm.14.设函数的图象为,则下列结论中正确的是__________(写出所有正确结论的编号).①图象关于直线对称;②图象关于点对称;③函数在区间内是增函数;④把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到图象.15.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______16.两平行线与的距离是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号的电动汽车在一段国道上进行测试,汽车行驶速度低于80km/h.经多次测试得到该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的数据如下表所示:为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,且,,()(1)当时,请选出你认为最符合表格中所列数据的函数模型,并说明理由;(2)求出(1)中所选函数模型的函数解析式;(3)根据(2)中所得函数解析式,求解如下问题:现有一辆同型号电动汽车从地驶到地,前一段是200km的国道,后一段是60km的高速路(汽车行驶速度不低于80km/h),若高速路上该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的关系满足,则如何行使才能使得总耗电量最少,最少为多少?18.已知是方程的两根,且,求的值19.某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)项目类别年固定成本每件产品成本每件产品销售价每年最多可生产的件数A产品20m10200B产品40818120其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[6,9],另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划20.某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).(1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;21.有两直线和,当a在区间内变化时,求直线与两坐标轴围成的四边形面积的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故选A【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题2、A【解析】由题可得函数在上单调递减,,且,再利用函数单调性即得.【详解】因为函数为偶函数且在上单调逆增,,所以函数在上单调递减,,且,所以,所以,解得或,即的取值范围是.故选:A.3、B【解析】由集合的表示方法以及交集的概念求解.【详解】由题意,集合,,∴.故选:B4、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.5、B【解析】,所以选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.6、C【解析】将原问题转化为函数交点个数的问题即可确定函数的零点个数.【详解】函数的零点个数即函数与函数交点的个数,绘制函数图象如图所示,观察可得交点个数为2,则函数的零点个数是2.本题选择C选项.【点睛】本题主要考查函数零点的定义,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.7、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A8、B【解析】先求出函数的零点的范围,进而判断的范围,即可求出.【详解】由题意可知是的零点,易知函数是(0,)上的单调递增函数,而,,即所以,结合性质,可知.故选B.【点睛】本题考查了函数的零点问题,属于基础题9、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.10、D【解析】根据交集的定义计算可得;【详解】解:因为,,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为12、【解析】底面为正方形,对角线长为.故圆半径为,故球的表面积为.【点睛】本题主要考查几何体的外接球问题.解决与几何体外接球有关的数学问题时,主要是要找到球心所在的位置,并计算出球的半径.寻找球心的一般方法是先找到一个面的外心,如本题中底面正方形的中心,球心就在这个外心的正上方,根据图形的对称性,易得球心就在正四棱柱中间的位置.13、6π+40【解析】根据角度制与弧度制的互化,可得圆心角,再由扇形的弧长公式,可得弧长,即可求解扇形的周长,得到答案.【详解】由题意,根据角度制与弧度制的互化,可得圆心角,∴由扇形的弧长公式,可得弧长,∴扇形的周长为.【点睛】本题主要考查了扇形的弧长公式的应用,其中解答中熟记扇形的弧长公式,合理准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.14、①③【解析】图象关于直线对称;所以①对;图象关于点对称;所以②错;,所以函数在区间内是增函数;所以③对;因为把函数的图象上点的横坐标缩短为原来的一半(纵坐标不变)可以得到,所以④错;填①③.15、;【解析】因为函数的图象向左平移个单位长度,得到,所以的最小值为16、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),理由见解析(2)(3)当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为【解析】(1)由表格数据判断合适的函数关系,(2)代入数据列方程组求解,(3)分别表示在国道与高速路上的耗电量,由单调性求其取最小值时的速度.【小问1详解】若选,则当时,该函数无意义,不合题意若选,显然该函数是减函数,这与矛看,不合题意故选择【小问2详解】选择,由表中数据得,解得,所以当时,【小问3详解】由题可知该汽车在国道路段所用时间为,所耗电量,所以当时,该汽车在高速路段所用时间为,所耗电量,易知在上单调递增,所以故当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为18、【解析】先计算出的值并分析的范围,再计算出的值,结合的范围求解出的值.【详解】因为,,所以,所以,因为,又因为,所以.19、(1),且;,且;(2)答案见解析.【解析】(1)设年销售量为件,由题意可得,,注意根据实际情况确定定义域.(2)分别计算两种方案的最值可得,讨论的符号,研究不同的方案所投资的产品及最大利润.【小问1详解】设年销售量为件,按利润的计算公式生产、两产品的年利润、分别为:,且;,且.【小问2详解】因为,则,故为增函数,又且,所以时,生产产品有最大利润:(万美元).又,且,所以时,生产产品有最大利润为460(万美元),综上,,令,得;令,得;令,得.由上知:当时,投资生产产品200件获得最大年利润;当时,投资生产产品100件获得最大年利润;当时,投资生产产品和产品获得的最大利润一样.20、(1);(2),.【解析】(1)根据题意列函数关系式即可,需注意,当时,由题意不生产纪念章,故;(2)利用配方法分别求解不同条件下的最值,并进行比较即可,需注意每枚的销售价格应为正整数【详解】(1)依题意,得,整理可得(2)由(1)可得,当时,则当时,;当时,则当或时,;因为,则当时,【点睛】本题考查函数关系式在生活中的应用,考查配方法求最值,实际应用中要注意自变量的取值范围21、.【解析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【详解】∵0<a<2,可得l1:ax

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论