版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省平顶山市,许昌市,汝州市高二上数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知中,内角所对的边分别,若,,,则()A. B.C. D.2.函数在上的极大值点为()A. B.C. D.3.已知m是2与8的等比中项,则圆锥曲线x2﹣=1的离心率是()A.或 B.C. D.或4.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线:就是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线围成的图形的面积是;②曲线上的任意两点间的距离不超过;③若是曲线上任意一点,则的最小值是其中正确结论的个数为()A. B.C. D.5.已知直线过点,,则直线的方程为()A. B.C. D.6.抛物线的准线方程为()A. B.C. D.7.在区间上随机取一个数,则事件“曲线表示圆”的概率为()A. B.C. D.8.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.9.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.10.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.11.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.12.若椭圆上一点到C的两个焦点的距离之和为,则()A.1 B.3C.6 D.1或3二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上的最大值是,则__________14.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____15.已知函数,则的值为______16.设x,y满足约束条件则的最大值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.18.(12分)已知命题p为“方程没有实数根”,命题q为“”.(1)若p为真命题,求m的取值范围;(2)若p和q有且只有一个为真命题,求m的取值范围.19.(12分)已知命题p:方程的曲线是焦点在y轴上的双曲线;命题q:方程无实根.若p或q为真,¬q为真,求实数m的取值范围.20.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.21.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由22.(10分)在中,角、、所对的边分别为、、,且(1)求证;、、成等差数列;(2)若,的面积为,求的周长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.2、C【解析】求出函数的导数,利用导数确定函数的单调性,即可求出函数的极大值点【详解】,∴当时,,单调递减,当时,,单调递增,当时,,单调递减,∴函数在的极大值点为故选:C3、A【解析】利用等比数列求出m,然后求解圆锥曲线的离心率即可【详解】解:m是2与8的等比中项,可得m=±4,当m=4时,圆锥曲线为双曲线x2﹣=1,它的离心率为:,当m=-4时,圆锥曲线x2﹣=1为椭圆,离心率:,故选:A4、C【解析】结合已知条件写出曲线的解析式,进而作出图像,对于①,通过图像可知,所求面积为四个半圆和一个正方形面积之和,结合数据求解即可;对于②,根据图像求出曲线上的任意两点间的距离的最大值即可判断;对于③,将问题转化为点到直线的距离,然后利用圆上一点到直线的距离的最小值为圆心到直线的距离减去半径即可求解.【详解】当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:,曲线的图像如下图所示:由上图可知,曲线所围成的面积为四个半圆的面积与边长为的正方形的面积之和,从而曲线所围成的面积,故①正确;由曲线的图像可知,曲线上的任意两点间的距离的最大值为两个半径与正方形的边长之和,即,故②错误;因为到直线的距离为,所以,当最小时,易知在曲线的第一象限内的图像上,因为曲线的第一象限内的图像是圆心为,半径为的半圆,所以圆心到的距离,从而,即,故③正确,故选:C.5、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C6、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.7、D【解析】先求出曲线表示圆参数的范围,再由几何概率可得答案.【详解】由可得曲线表示圆,则解得或又所以曲线表示圆的概率为故选:D8、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.9、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.10、D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:11、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.12、B【解析】讨论焦点的位置利用椭圆定义可得答案.【详解】若,则由得(舍去);若,则由得故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.14、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:15、【解析】先求出的导函数,然后将代入可得答案.【详解】,所以故答案为:16、1【解析】先作出可行域,由,得,作出直线,向下平移过点时,取得最大值,求出点坐标代入目标函数中可得答案【详解】作出可行域如图(图中阴影部分),由,得,作出直线,向下平移过点时,取得最大值,由,得,即,所以的最大值为,故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)对,利用正弦定理和诱导公式整理化简得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值为1,代入面积公式求面积.【小问1详解】对于.由正弦定理知:即.所以.所以.所以因为,,所以.所以.因为,所以.【小问2详解】因为,由正弦定理知:.由余弦定理知:,所以.当且仅当时,等号成立,所以ab的最大值为1.所以,即面积的最大值为.18、(1)(2)【解析】(1)方程无根,利用根的判别式小于0求出m的取值范围;(2)和有且只有一个为真命题,分两种情况进行求解,最终求出结果.【小问1详解】由方程没有实数根,得,解得:.所以m的取值范围为.【小问2详解】和有且只有一个为真命题,分为下列两种情况:①当真且假时,且,得;②当假且真时,且,得.所以,的取值范围为.19、.【解析】计算命题p:;命题;根据p或q为真,¬q为真得到真假,计算得到答案.【详解】若方程的曲线是焦点在轴上的双曲线,则满足,即,即,即若方程无实根,则判别式,即,得,即,即若为真,则为假,同时若或为真,则为真命题,即,得,即实数的取值范围是.【点睛】本题考查了命题的真假计算参数范围,根据条件判断出真假是解题的关键.20、(1);(2).【解析】(1)由题设,原不等式等价于,分类讨论即可得出结论;(2)不等式对任意恒成立,即,即可求实数a的取值范围.【详解】(1)当时,原不等式等价于,当时,,解得,即;当时,恒成立,即;当时,,解得,即;综上,不等式的解集为;(2),,即或,解得,∴a取值范围是.21、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工商合同规范管理科工作职责
- 杭州市事业单位聘用合同管理办法
- 《氩弧管管水平固定》课件
- 《母亲节促销方案》课件
- 2025年长春货运从业资格证考试题及答案大全
- 2025年哈尔滨货运从业资格考试题库答案大全
- 2025年和田货运上岗证考试题库答案
- 第25课《活板》知识点梳理及练习-2022-2023学年七年级语文下册古诗文专题期中期末复习(部编版)教师版
- 精密制造防火封堵
- 苏科版九年级物理上册一课一测-14.1电阻
- 2024年小学三年级英语家长会课件-(带附加条款)
- 材料科技有限公司年产12500吨电子冷却液项目环评可研资料环境影响
- 时间管理与工作效率提高
- 廉洁应征承诺书
- 品质部年终工作总结
- 2023甘肃兰州生物制品研究所限责任公司招聘77人历年高频难易度、易错点模拟试题(共500题)附带答案详解
- 光伏清洁机器人行业报告
- 中国平安体育营销品牌策略
- 《汽车销售礼仪》课件
- 《小小主持人》课件
- 安全教育为快乐成长保驾护航
评论
0/150
提交评论