江苏省扬州市仪征市、高邮市2024-2025学年数学九年级第一学期开学监测试题【含答案】_第1页
江苏省扬州市仪征市、高邮市2024-2025学年数学九年级第一学期开学监测试题【含答案】_第2页
江苏省扬州市仪征市、高邮市2024-2025学年数学九年级第一学期开学监测试题【含答案】_第3页
江苏省扬州市仪征市、高邮市2024-2025学年数学九年级第一学期开学监测试题【含答案】_第4页
江苏省扬州市仪征市、高邮市2024-2025学年数学九年级第一学期开学监测试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页江苏省扬州市仪征市、高邮市2024-2025学年数学九年级第一学期开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,中,,在同一平面内,将绕点A旋转到的位置,使得,则等于()A. B. C. D.2、(4分)甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是()A.甲 B.乙 C.甲和乙一样 D.无法确定3、(4分)已知矩形ABCD如图,AB=3,BC=4,AE平分∠BAD交BC于点E,点F、G分别为AD、AE的中点,则FG=()A. B. C.2 D.4、(4分)如图,菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEFA.23cm B.3cm C.45、(4分)若腰三角形的周长是,则能反映这个等腰三角形的腰长(单位:)与底边长(单位:)之间的函数关系式的图象是()A. B.C. D.6、(4分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.267、(4分)如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A. B.- C.1 D.﹣18、(4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为()A.24 B.-12 C.-6 D.±6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在正方形ABCD的右边作等腰三角形ADE,AD=AE,,连BE,则__________.10、(4分)已知,则______11、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.12、(4分)如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________13、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.三、解答题(本大题共5个小题,共48分)14、(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题(1)表中=,=;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?15、(8分)如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)如图2,过D作DG⊥AF,求DG的长度;(3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,1),其中n>1.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.16、(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明.17、(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,,的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?18、(10分)如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.(1)求证:四边形ADFC是平行四边形;(2)若∠BDC=90°,求证:CD平分∠ACB;(3)在(2)的条件下,若BD=DC=6,求AB的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.20、(4分)已知,则x等于_____.21、(4分)满足a2+b2=c2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.22、(4分)如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.23、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.二、解答题(本大题共3个小题,共30分)24、(8分)(1)求不等式组的整数解.(2)解方程组:25、(10分)何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3为什么要对2n2进行了拆项呢?聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..解决问题:(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;(2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?26、(12分)在矩形中,点在上,,,垂足为.(1)求证:;(2)若,且,求.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据平行线的性质得到∠ACD=∠CAB=63°,根据旋转变换的性质求出∠ADC=∠ACD=63°,根据三角形内角和定理求出∠CAD=54°,然后计算即可.【详解】解:∵DC∥AB,∴∠ACD=∠CAB=63°,由旋转的性质可知,AD=AC,∠DAE=∠CAB=63°,∴∠ADC=∠ACD=63°,∴∠CAD=54°,∴∠CAE=9°,∴∠BAE=54°,故选:A.本题考查的是旋转变换,掌握平行线的性质、旋转变换的性质是解题的关键.2、A【解析】

方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.【详解】∵,∴∴甲同学的成绩比较稳定故选:A.本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.3、D【解析】

由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=3,∵BC=AD=4,∴EC=1,连接DE,如图,∴DE=,∵点F、G分别为AD、AE的中点,∴FG=.故选D.本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.4、D【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.【详解】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD=2cm,∠B=∠D,∵E、F分别是BC、CD的中点,∴BE=DF,在△ABE和△ADF中,AB=AD∠B∴△ABE≌△ADF(SAS),∴AE=AF,∠BAE=∠DAF.连接AC,∵∠B=∠D=60°,∴△ABC与△ACD是等边三角形,∴AE⊥BC,AF⊥CD,∴∠BAE=∠DAF=30°,∴∠EAF=60°,BE=12AB=1cm∴△AEF是等边三角形,AE=AB2∴周长是33故选:D.本题主要考查了菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质以及勾股定理,涉及知识点较多,也考察了学生推理计算的能力.5、D【解析】

根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.【详解】解:根据题意,x+2y=10,所以,,

根据三角形的三边关系,x>y-y=0,x<y+y=2y,所以,x+x<10,解得x<5,所以,y与x的函数关系式为(0<x<5),纵观各选项,只有D选项符合.故选D.本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.6、D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=(AB+EH)×BE=(8+5)×4=1.故选D.7、B【解析】

根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标.【详解】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为,即(1,1).∴OD=每秒旋转45°,则第2019秒时,得45°×2019,45°×2019÷360=252.375周,OD旋转了252又周,菱形的对角线交点D的坐标为(﹣,0),故选:B.考查菱形的性质及旋转的性质,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.8、C【解析】【分析】根据菱形性质求出C的坐标,再代入解析式求k的值.【详解】∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2).∵点C在反比例函数y=(x<0)的图象上,∴,解得k=-6.故选:C【点睛】本题考核知识点:菱形和反比例函数.解题关键点:利用菱形性质求C的坐标.二、填空题(本大题共5个小题,每小题4分,共20分)9、45°【解析】

先证明AB=AE,求得∠AEB,由AD=AE,∠DAE=50°,求得∠AED,进而由角的和差关系求得结果.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AD=AE,∠DAE=50°,∴AB=AE,∠ADE=∠AED=65°,∠BAE=140°,∴∠ABE=∠AEB=20°,∴∠BED=65°−20°=45°,故答案为:45°.本题主要考查了正方形的性质,等腰三角形的性质,三角形内角和定理,关键是求得∠AEB和∠AED的度数.10、34【解析】∵,∴=,故答案为34.11、﹣1【解析】

首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD∥BG,AD=BC,∴∠DAE=∠G=30°,∵DE=EC,∠AED=∠GEC,∴△ADE≌△GCE,∴AE=EG=AD=CG=1,在Rt△BFG中,∵FG=BG•cos30°=,∴EF=FG-EG=-1,故答案为-1.本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.12、【解析】

解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,13、【解析】

连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.【详解】解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).

故答案为:(3,0).本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)8,20(2)见解析(3)330人【解析】

(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;

(2)根据(1)中b的值可以将频数分布直方图补充完整;

(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.【详解】(1)由频数分布直方图可知,a=8,

b=50-8-12-10=20,

故答案为:8,20;

(2)由(1)知,b=20,

补全的频数分布直方图如图所示;(3)550×=330(人),

答:该年级学生立定跳远成绩优秀的学生有330人.本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.15、(2)折痕AE所在直线与x轴交点的坐标为(9,2);(2)3;(3)点B(4,2)或B(2,2).【解析】

(2)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;(2)判断出△DAG≌△AFB,即可得出结论;(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.【详解】解:(2)∵四边形ABCD是矩形,∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=92°,由折叠对称性:AF=AD=5,EF=DE,在Rt△ABF中,BF==4,∴CF=2,设EC=x,则EF=3﹣x,在Rt△ECF中,22+x2=(3﹣x)2,解得:x=,∴E点坐标为:(5,),∴设AE所在直线解析式为:y=ax+b,则,解得:,∴AE所在直线解析式为:y=x+3,当y=2时,x=9,故折痕AE所在直线与x轴交点的坐标为:(9,2);(2)在△DAG和△AFB中∵,∴△DAG≌△AFB,∴DG=AB=3;(3)分三种情况讨论:若AO=AF,∵AB⊥OF,∴BO=BF=4,∴n=4,∴B(4,2),若OF=FA,则n+4=5,解得:n=2,∴B(2,2),若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+9,∴(n+4)2=n2+9,解得:n=(n<2不合题意舍去),综上所述,若△OAF是等腰三角形,n的值为n=4或2.即点B(4,2)或B(2,2).此题是四边形综合题,主要考查了待定系数法,折叠的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,利用勾股定理求出CE是解本题的关键.16、(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.【解析】

(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;【详解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,顶点在BC边上,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,∴抛物线解析式为y=—(x﹣2)2+3,即y=—x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形.此题考查二次函数综合题,解题关键在于利用勾股定理逆定理进行求证.17、(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】

(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.18、(1)见解析;(2)见解析;(3)310【解析】

(1)证明EF是ΔABC的中位线,得出EF//AC,DF//AC,由AD//BC,即可得出四边形ADFC是平行四边形;(2)由直角三角形斜边上的中线性质得出DF=12BC=CF(3)证出ΔBDC为等腰直角三角形,得出BC=2BD=62,由等腰三角形的性质得出DF⊥BC,FC=12BC=32【详解】(1)证明:∵点E,F分别是BA,BC边的中点,∴EF是ΔABC的中位线,∴EF//AC,∴DF//AC,又∵AD//BC,∴四边形ADFC是平行四边形;(2)解:∵∠BDC=90°,F是BC边的中点,∴DF=1∴平行四边形ADFC为菱形,∴CD平分∠ACB;(3)解:∵BD=CD=6,∠BDC=90°,∴ΔBDC为等腰直角三角形,∴BC=2∵F是BC边的中点,∴DF⊥BC,FC=1∵四边形ADFC是菱形,∴四边形ADFC为正方形,∴∠ACB=90°,AC=FC=32∴AB=A本题考查了平行四边形的判定与性质、三角形中位线定理、直角三角形斜边上的中线性质、菱形的判定与性质、正方形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定与性质,证明四边形是菱形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、4.4×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20、2【解析】

先化简方程,再求方程的解即可得出答案.【详解】解:根据题意可得x>0∵x+2+=10++3=10=2x=2.故答案为:2.本题考查无理方程,化简二次根式是解题的关键.21、3,4,56,8,10【解析】

根据勾股数的定义即可得出答案.【详解】∵3、4、5是三个正整数,且满足,∴3、4、5是一组勾股数;同理,6、8、10也是一组勾股数.故答案为:①3,4,5;②6,8,10.本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.22、b>1.【解析】

先确定b≠1,则方程变形为x2=,根据平方根的定义得到>1时,方程有实数解,然后解关于b的不等式即可.【详解】根据题意得b≠1,x2=,当>1时,方程有实数解,所以b>1.故答案为:b>1.本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥1)的一元二次方程可采用直接开平方的方法解一元二次方程.23、-5【解析】

根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.【详解】∵点P(1,2)关于x轴的对称点为P′∴点P′坐标为(1,-2)又∵点P′在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论