江苏省无锡新区六校联考2024-2025学年九上数学开学调研试题【含答案】_第1页
江苏省无锡新区六校联考2024-2025学年九上数学开学调研试题【含答案】_第2页
江苏省无锡新区六校联考2024-2025学年九上数学开学调研试题【含答案】_第3页
江苏省无锡新区六校联考2024-2025学年九上数学开学调研试题【含答案】_第4页
江苏省无锡新区六校联考2024-2025学年九上数学开学调研试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江苏省无锡新区六校联考2024-2025学年九上数学开学调研试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)菱形具有而一般平行四边形不具有的性质是()A.两组对边分别相等 B.两条对角线相等C.四个内角都是直角 D.每一条对角线平分一组对角2、(4分)已知实数,在数轴上的位置如图所示,化简:的结果是()A. B.C. D.3、(4分)一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是()A. B. C. D.当时,4、(4分)如图,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正确的是()A.②③ B.②③④ C.③④ D.①②③④5、(4分)一个多边形的内角和比外角和的3倍多180°,则它的边数是()A.八 B.九 C.十 D.十一6、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.13,14,157、(4分)巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟8、(4分)已知,、,、是一次函数的图象上三点,则,,的大小关系是A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.10、(4分)若关于x的分式方程的解为非负数,则a的取值范围是_____.11、(4分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠CAB的角平分线,DE⊥AB于点E,若BE=4cm,则AC的长是____________cm.12、(4分)如图,在中,,,,点、分别是、的中点,交的延长线于,则四边形的面积为______.13、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形ABCD中,AB=AC,BD=DC,BE//DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形.15、(8分)如图,在中,,点D.E分别是边AB、BC的中点,过点A作交ED的延长线于点F,连接BF。(1)求证:四边形ACEF是菱形;(2)若四边形AEBF也是菱形,直接写出线段AB与线段AC的关系。16、(8分)某市计划修建一条长60千米的地铁,根据甲,乙两个地铁修建公司标书数据发现:甲,乙两公司每天修建地铁长度之比为3:5;甲公司单独完成此项工程比乙公司单独完成此项工程要多用240天.(1)求甲,乙两个公司每天分别修建地铁多少千米?(2)该市规定:“该工程由甲,乙两个公司轮流施工完成,工期不超过450天,且甲公司工作天数不少于乙公司工作天数的”.设甲公司工作a天,乙公司工作b天.①请求出b与a的函数关系式及a的取值范围;②设完成此项工程的工期为W天,请求出W的最小值.17、(10分)张老师在微机上设计了一长方形图片,已知长方形的长是cm,宽是cm,他又设计一个面积与其相等的圆,请你帮助张老师求出圆的半径r.18、(10分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.(1)求点A,B的坐标;(1)当P为线段AB的中点时,求d1+d1的值;(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一次函数的图象经过点,且与轴、轴分别交于点、,则的面积等于___________.20、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____21、(4分)一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.22、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为1m,那么它的下部应设计的高度为_____.23、(4分)如图,□ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4,则□ABCD的面积等于________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.(1)求证:∠ADG=∠DCF;(2)联结HO,试证明HO平分∠CHG.25、(10分)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是26、(12分)甲、乙两名射击运动员各进行10次射击,甲的成绩是7,7,8,1,8,1,10,1,1,1.乙的成绩如图所示(单位:环)(1)分别计算甲、乙两人射击成绩的平均数;(2)若要选拔一人参加比赛,应派哪一位?请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.【详解】解:平行四边形的对角线互相平分,对边相等,

且菱形具有平行四边形的全部性质,

故A、B、C选项错误;

对角线平分一组对角的平行四边形是菱形,故D选项正确.

故选D.本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.2、B【解析】

直接利用数轴结合二次根式的性质化简得出答案.【详解】解:由数轴可得:-1<a<0,0<b<1,故应选B本题主要考查了二次根式的性质与化简,解题关键是根据字母数字范围正确化简二次根式.3、B【解析】

根据两函数图象平行k相同,以及平移规律“左加右减,上加下减”即可判断【详解】∵将直线向下平移若干个单位后得直线,∴直线∥直线,∴,∵直线向下平移若干个单位后得直线,∴,∴当时,故选B.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.4、B【解析】分析:求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.详解:∵∠AFC=135°,CF与AH不垂直,∴点F不是AH的中点,即AF≠FH,∴①错误;∵四边形ABCD是矩形,∴∠BAD=90°,∵AD=,AB=1,∴tan∠ADB=,∴∠ADB=30°,∴∠ABO=60°,∵四边形ABCD是矩形,,,,,∴AO=BO,∴△ABO是等边三角形,∴AB=BO,,∵AF平分∠BAD,,,,,,,,∴②正确;,,,,,,,,,∴③正确;∵△AOB是等边三角形,,∵四边形ABCD是矩形,,OB=OD,AB=CD,∴DC=OC=OD,,,即BE=3ED,∴④正确;即正确的有3个,故选C.点睛:本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.5、B【解析】

多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.【详解】根据题意,得:(n-2)•180°=3×360°+180°,解得:n=1,则这个多边形的边数是1.故选B.本题考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.6、C【解析】

判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.【详解】A、12+22=5≠32,故不能组成直角三角形,错误;

B、42+62≠82,故不能组成直角三角形,错误;

C、62+82=102,故能组成直角三角形,正确;

D、132+142≠152,故不能组成直角三角形,错误.

故选:C.考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.8、C【解析】

分别计算自变量为,和1时的函数值,然后比较函数值的大小即可.【详解】,、,、是一次函数的图象上三点,,,.,.故选:C.本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、-1【解析】

根据平方差公式求出即可.【详解】解:∵a+b=8,a﹣b=﹣5,∴a2﹣b2=(a+b)(a﹣b)),=8×(﹣5),=﹣1,故答案为:﹣1.本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.10、且【解析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.11、4+4【解析】

易证△ABC和△DEB是等腰直角三角形,然后求出DE和BD,结合角平分线的性质定理可得答案.【详解】解:∵∠C=90°,AC=BC,DE⊥AB,∴△ABC和△DEB是等腰直角三角形,∵BE=4cm,∴DE=4cm,cm,∵AD是∠CAB的角平分线,∴CD=DE=4cm,∴AC=BC=CD+BD=(cm),故答案为:.本题考查了等腰直角三角形的判定和性质、勾股定理以及角平分线的性质定理,求出DE和BD的长是解题的关键.12、12【解析】

由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以,又因为BD=DC,所以,所以,从而求出答案;【详解】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,,∴△AEF≌△DEC(AAS),∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴,又∵BD=DC,∴,∴,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB×AC=×4×6=12,∴四边形AFBD的面积为:12;故答案为:12.本题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,掌握平行四边形的判定与性质,全等三角形的判定与性质是解题的关键.13、2【解析】

解:这组数据的平均数为2,

有(2+2+0-2+x+2)=2,

可求得x=2.

将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,

其平均数即中位数是(2+2)÷2=2.

故答案是:2.三、解答题(本大题共5个小题,共48分)14、(1)作图见解析(2)作图见解析【解析】

(1)连接AD、BC相交于点O,Rt△AOB即为所求;(2)连接AD交BE于F,连接CF,四边形BFCD即为所求.【详解】(1)连接AD、BC相交于点O,Rt△AOB即为所求;(2)连接AD交BE于F,连接CF,四边形BFCD即为所求.本题考查了尺规作图的问题,掌握直角三角形和菱形的性质是解题的关键.15、(1)见解析;(2),.【解析】

(1)由题意得出,DE是的中位线,得出四边形ACEF是平行四边形,再根据点E是边BC的中点得,即可证明.(2)根据菱形的性质,得出,,即可得出,再根据直角三角形斜边的中线得出EC=BC=AC=AE,推出为等边三角形,即可求出.【详解】(1)证明:点D、E分别是边AB、BC的中点,DE是的中位线,,,四边形ACEF是平行四边形,点E是边BC的中点,,,,是菱形.(2)是菱形由(1)知,是菱形又BC=2AC,E为BC的中点AE=BCEC=BC=AC=AE为等边三角形∠C=60°综上,,本题考查平行四边形的判定、菱形的判定和性质、三角形中位线定理、含30°角的直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.16、(1)甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①;②W最小值为440天【解析】

(1)甲公司每天修千米,乙公司每天修千米,根据题意列分式方程解答即可;(2)①由题意得,再根据题意列不等式组即可求出的取值范围;②写出与、之间的关系式,再根据一次函数的性质解答即可.【详解】解:(1)设甲公司每天修千米,乙公司每天修千米,根据题意得,,解得,经检验,为原方程的根,,,答:甲公司每天修建地铁千米,乙公司每天修建地铁千米;(2)①由题意得,,,又,;②由题意得,,即,,随的增大而增大,又,时,最小值为440天.本题考查了一次函数的应用,一元一次不等式的应用,分式方程的应用,解题的关键是从实际问题中整理出数量关系并利用该数量关系求解.17、r=【解析】

设圆的半径为R,根据圆的面积公式和矩形面积公式得到πR2=•,再根据二次根式的性质化简后利用平方根的定义求解.【详解】解:设圆的半径为R,

根据题意得πR2=•,即πR2=70π,

解得R1=,R2=-(舍去),

所以所求圆的半径为cm.故答案为:.本题考查二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.18、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点,a=1.【解析】

(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,(1)求出P点坐标,即可求出d1+d1的值;.(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.【详解】(1)如图所示,令y=0时,x=1,x=0时,y=-4,∴A(1,0)B(0,-4)(1)当为线段的中点时,P(,)即P(1,-1)∴d1+d1=3(3)d1+d1≥1∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),∴d1+d1=︱xp︱+︱yp︱=︱m︱+︱1m-4︱.由题当d1+d1=3时,根据1m-4=1(m-1)可分析,当0≤m≤1时,d1+d1=m+4-1m=3,此时解得,m=1∴得点p1(1,1).当m>1时,同理,d1+d1=m+1m-4=3,解得m=,所以得点p1(,).当m<0时,d1+d1=-m+4-1m=3,解得m=,即不符合m<0,故此时不存在点p.综上所述,当d1+d1=3时点的坐标为点p1(1,1)、p1(,).(4)设点P(m,1m-4),∴d1=︱1m-4︱,d1=︱m︱,∵P在线段AB上,且点A(1,0),B(0,-4),∴0≤m≤1.即d1=4-1m,d1=m.∵使d1+ad1=4(a为常数),∴代入数值得4-1m+am=4,即(a-1)m=0,根据题意在线段上存在无数个p点,所以a=1.此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】∵一次函数y=−2x+m的图象经过点P(−2,3),∴3=4+m,解得m=−1,∴y=−2x−1,∵当x=0时,y=−1,∴与y轴交点B(0,−1),∵当y=0时,x=−,∴与x轴交点A(−,0),∴△AOB的面积:×1×=.故答案为.点睛:首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.20、2【解析】

由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.【详解】∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=2,∴DF=BC=1,在Rt△ADF中,∠A=30°,DF=1,∴tan30°=,即AD=,∴CD=AD=,则矩形BCDE的面积S=CD⋅BC=2.故答案为2此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形21、1.1,2,2.1.【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.详解:1,3,1,1,2,a的众数是a,∴a=1或2或3或1,将数据从小到大排列分别为:1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,3,3,1,1,1,2,3,1,1.故中位数分别为:1.1,2,2.1.故答案为:1.1,2,2.1.点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.22、【解析】

设雕像的下部高为xm,则上部长为(1-x)m,然后根据题意列出方程求解即可.【详解】解:设雕像的下部高为xm,则题意得:,整理得:,解得:或(舍去);∴它的下部应设计的高度为.故答案为:.本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.23、16【解析】

根据等边三角形性质求出OA=OB=AB,根据平行四边形性质推出AC=BD,根据矩形的判定推出平行四边形ABCD是矩形;求出AC长,根据勾股定理求出BC,根据矩形的面积公式求出即可.【详解】∵△AOB是等边三角形,∴OA=OB=AB=4,∵四边形ABCD是平行四边形,∴AC=2OA,BD=2OB,∴AC=BD,∴平行四边形ABCD是矩形.∵OA=AB=4,AC=2OA=8,四边形ABCD是矩形,∴∠ABC=90°,∵在Rt△ABC中,由勾股定理得:BC=,∴▱ABCD的面积是:AB×BC=4×4=16.此题考查矩形的判定与性质,平行四边形的性质,勾股定理,等边三角形的性质,解题关键在于求出AC长.二、解答题(本大题共3个小题,共3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论