版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页江苏省无锡市刘潭实验学校2024年数学九年级第一学期开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列二次根式是最简二次根式的是(
)A. B. C. D.2、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米3、(4分)计算的结果是()A. B. C. D.4、(4分)在RtΔABC中,∠ACB=90∘,CD⊥AB于D,CE平分∠ACD交AB于EA.BC=ECB.EC=BEC.BC=BED.AE=EC5、(4分)漳州市政府为了鼓励市民绿色出行,投资了一批城市公共自行车,收费如下:第1小时内免费,1小时以上,每半小时收费0.5元(不到半小时按半小时计).马小跳刷卡时显示收费1.5元,则马小跳租车时间x的取值范围为()A.1<x≤1.5 B.2<x≤2.5 C.2.5<x≤3 D.3<x≤46、(4分)运用分式的性质,下列计算正确的是()A. B. C. D.7、(4分)若分式有意义,则x的取值范围是()A.x≠﹣1 B.x≠0 C.x>﹣1 D.x<﹣18、(4分)如图1,在▱ABCD中,对角线AC,BD相交于点0,添加下列条件后,能使▱ABCD成为矩形的是()A.AB=AD B.AC=BD C.BD平分∠ABC D.AC⊥BD二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在△ABC中,AB=10,CA=8,BC=6,∠BAC的平分线与∠BCA的平分线交于点I,且DI∥BC交AB于点D,则DI的长为____.10、(4分)若不等式组的解集是,则m的值是________.11、(4分)已知,则的值等于________.12、(4分)将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.13、(4分)已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为____。三、解答题(本大题共5个小题,共48分)14、(12分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.15、(8分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.16、(8分)已知,如图,正方形的边长为4厘米,点从点出发,经沿正方形的边以2厘米/秒的速度运动;同时,点从点出发以1厘米/秒的速度沿向点运动,设运动时间为t秒,的面积为平方厘米.(1)当时,的面积为__________平方厘米;(2)求的长(用含的代数式表示);(3)当点在线段上运动,且为等腰三角形时,求此时的值;(4)求与之间的函数关系式.17、(10分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出周长C的最小值.18、(10分)如图是某汽车行驶的路程s(km)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:(1)求汽车在前9分钟内的平均速度.(2)汽车在中途停留的时间.(3)求该汽车行驶30千米的时间.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.20、(4分)在平面直角坐标系中,将点绕点旋转,得到的对应点的坐标是__________.21、(4分)若点A(2,m)在平面直角坐标系的x轴上,则点P(m-1,m+3)到原点O的距离为_____.22、(4分)如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是_____.23、(4分)如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=12BC,连结CD、EF,那么CD与EF25、(10分)完成下列各题(1)计算:(2)解方程:26、(12分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________.(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果_________,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】【分析】最简二次根式:①被开方数不含有分母(小数);②被开方数中不含有可以开方开得出的因数或因式;【详解】A.,被开方数含有分母,本选项不能选;B.,被开方数中含有可以开方开得出的因数,本选项不能选;C.是最简二次根式;D.,被开方数中含有可以开方开得出的因数,本选项不能选.故选:C【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.2、C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.3、A【解析】
根据二次根式性质求解.【详解】根据得=3故答案为:A考核知识点:算术平方根性质.理解定义是关键.4、C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.5、B【解析】
根据题意,可以列出相应的不等式组,从而可以求得x的取值范围.【详解】由题意可得,,解得,2<x≤2.5,故选B.本题考查一元一次不等式组的应用,解答本题的关键是明确题意,列出相应的不等式组,注意题目中每半小时收费0.5元,也就是说每小时收费1元.6、D【解析】
根据分式的分子分母都乘以(或者除以)同一个整式,分式的值不变,可解答【详解】A、分子分母都除以x2,故A错误;B、分子分母都除以(x+y),故B错误;C、分子分母都减x,分式的值发生变化,故C错误;D、分子分母都除以(x﹣y),故D正确;故选:D.此题考查分式的基本性质,难度不大7、A【解析】
根据分式有意义的条件即可求出答案.【详解】解:由题意可知:x+1≠0,即x≠-1故选:A.本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.8、B【解析】
根据矩形的判定方法逐一进行分析即可.【详解】A.若添加AB=AD,根据有一组邻边相等的平行四边形是菱形,可判断四边形ABCD为菱形,故不符合题意;B.若添加AC=BD,根据对角线相等的平行四边形是矩形,可判断四边形ABCD是矩形,故符合题意;C.若添加BD平分∠ABC,则有∠ABD=∠DBC,∵平行四边形ABCD中,AB//CD,∴∠ABD=∠CDB,∴∠DBC=∠CDB,∴BC=DC,∴平行四边形ABCD是菱形,故不符合题意;D.若添加AC⊥BD,根据对角线互相垂直的平行四边形是菱形,可判断四边形ABCD是菱形,故不符合题意,故选B.本题考查了矩形的判定,菱形的判定,熟练掌握相关的判定定理是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、2.5【解析】
根据题意,△ABC是直角三角形,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,由点I是内心,则,利用等面积的方法求得,然后利用平行线分线段成比例,得,又由BD=DI,把数据代入计算,即可得到DI的长度.【详解】解:如图,延长DI交AC于点E,过I作IF⊥AB,IG⊥BC,在△ABC中,AB=10,CA=8,BC=6,∴,∴△ABC是直角三角形,即AC⊥BC,∵DI∥BC,∴DE⊥AC,∵∠BAC的平分线与∠BCA的平分线交于点I,∴点I是三角形的内心,则,在△ABC中,根据等面积的方法,有,设即,解得:,∵DI∥BC,∴,∠DIB=∠CBI=∠DBI,∴DI=BD,∴,解得:BD=2.5,∴DI=2.5;故答案为:2.5.本题考查了三角形的角平分线性质,平行线分线段成比例,以及等面积法计算高,解题的关键是利用等面积法求得内心到各边的距离,以及掌握平行线分线段成比例的性质.10、2【解析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.【详解】解:,解得:,∵不等式组的解集为:,∴;故答案为:2.本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.11、3【解析】
将通分后,再取倒数可得结果;或将分子分母同除,代入条件即可得结果.【详解】方法一:∵∴方法二:故答案为3.本题考查分式的求值,从条件入手或从问题入手,都可以得出结果,将分式变形是解题的关键.12、【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【详解】解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),故答案为:(-2,-1).本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.13、4.8cm.【解析】
根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【详解】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10(cm),设斜边上的高为h,则直角三角形的面积为×6×8=×10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为:4.8cm.此题考查勾股定理,解题关键在于列出方程.三、解答题(本大题共5个小题,共48分)14、A(0,4),B(﹣3,2),C(﹣2,﹣1),E(3,3),F(0,0).【解析】
(1)已知游乐园的坐标为(2,-2),将该点向左平移两个单位、再向上平移两个单位,即可得到原点(0,0)的位置;接下来,以(0,0)为坐标原点,以水平向右的方向为x轴正半轴,以竖直向上的方向为y轴正方向建立平面直角坐标系即可;(2)根据(1)中的坐标系和其他各景点的位置即可确定它们的坐标.【详解】(1)由题意可得,建立的平面直角坐标系如图所示.(2)由平面直角坐标系可知,音乐台A的坐标为(0,4),湖心亭B的坐标为(-3,2),望春亭C的坐标为(-2,-1),游乐园D的坐标为(2,-2),牡丹园E的坐标为(3,3).本题考查坐标确定位置.15、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.【解析】
(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.【详解】(1).(2)由题意得:,解得.又因为,所以.由(1)可知,,所以的值随着的增加而减小.所以当时,取最大值,此时生产乙种产品(吨).答:工厂生产甲产品1000吨,乙产品1500吨,时,能获得最大利润.这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.16、(1)8;(1)BP=;(2);(3)S.【解析】
(1)先确定当t=1时P和Q的位置,再利用三角形面积公式可得结论;(1)分两种情况表示BP的长;(2)如图1,根据CQ=CP列方程可解答;(3)分两种情况:①当0≤t≤1时,P在AB上,如图2,②当1<t≤3时,P在BC上,如图3,根据三角形面积公式可得结论.【详解】(1)当t=1时,点P与B重合,Q在CD上,如图1,∴△APQ的面积8(平方厘米).故答案为:8;(1)分两种情况:当0≤t≤1时,P在AB上,BP=AB﹣AP=3﹣1t,当1<t≤3时,P在BC上,BP=1t﹣3;综上所述:BP=;(2)如图1.∵△PCQ为等腰三角形,∴CQ=CP,即t=8﹣1t,t,∴当点P在线段BC上运动,且△PCQ为等腰三角形时,此时t的值是秒;(3)分两种情况:①当0≤t≤1时,P在AB上,如图2.S3t②当1<t≤3时,P在BC上,如图3.S=S正方形ABCD﹣S△ABP﹣S△CPQ﹣S△ADQ=3×3t1﹣6t+16;综上所述:S与t之间的函数关系式为:S.本题是四边形的综合题,也是几何动点问题,主要考查了正方形的性质、三角形的面积、动点运动的路程,解题的关键是灵活运用所学知识,学会利用数形结合的思想解决问题.17、(1)、;(2);(3)①;②.【解析】
(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE-AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【详解】(1)∵BC=AD=9,BE=4,∴CE=9-4=5,∵AF=CE,即:3t=5,∴t=,∴,即:,解得BH=;当t=时,AF=CE,此时BH=.(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF∴即∴BH=当点F在点B的左边时,即t<4时,BF=12-3t此时,当△BEF∽△BHE时:即解得:此时,当△BEF∽△BEH时:有BF=BH,即解得:当点F在点B的右边时,即t>4时,BF=3t-12此时,当△BEF∽△BHE时:即解得:(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=;②如图∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'=,∴C的最小值=.此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.18、(1)(2)7(3)25分钟【解析】
试题分析:(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.解:(1)平均速度=km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,S与t的函数关系式为S=2t﹣20,当S=30时,30=2t﹣20,解得t=25,即该汽车行驶30千米的时间为25分钟.考点:一次函数的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m的取值范围.详解:∵关于x的方程有实数根,
∴△=(-4)²-4×2m=16-8m≥0,
解得:m≤2
故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.20、【解析】
根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【详解】解:在平面直角坐标系xOy中,将点N(-1,-2)绕点O旋转180°,得到的对应点的坐标是(1,2),故答案为:(1,2)本题考查坐标与图形变化-旋转,解答本题的关键是明确题意,熟知坐标变化规律.21、【解析】
首先根据x轴上的点纵坐标为0得出m的值,再根据勾股定理即可求解.【详解】解:∵点A(2,m)在直角坐标系的x轴上,∴m=0,∴点P(m-1,m+3),即(-1,3)到原点O的距离为.故答案为:.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.求出m的值是解题的关键.22、x<1.【解析】
根据一次函数与一元一次不等式的关系即可直接得出答案.【详解】由一次函数y=ax+b的图象经过A(1,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<1,故答案为:x<1.本题主要考查一次函数和一元一次不等式的知识点,解答本题的关键是进行数形结合,此题比较简单.23、(2,2).【解析】
解:过点B作DE⊥OE于E,∵矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,∴∠CAO=30°.又∵OC=2,∴AC=1.∴OB=AC=1.又∵∠OBC=∠CAO=30°,DE⊥OE,∠CBA=90°,∴∠OBE=30°.∴OE=2,BE=OB·cos∠OBE=2.∴点B的坐标是(2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024分布式电站云边协同技术规范
- 《机械制造基础》课件 模块8 机械装配工艺的基础知识
- 逻辑推断题马于玲
- 国内外相似案例研究:锦荟PARK及碧桂园·森林城市
- 勾股定理复习课课件
- 16.2《登泰山记》课件 2024-2025学年统编版高中语文必修上册-9
- 江苏省南京市第29中2025届高考仿真卷语文试卷含解析
- 浙江省宁波市咸祥中学2025届高考冲刺模拟数学试题含解析
- 山东省邹平县黄山中学2025届高考语文倒计时模拟卷含解析
- 河南省许昌市重点中学2025届高考英语押题试卷含解析
- 2024三方物流园区租赁与运营管理合同3篇
- 【MOOC】例解宏观经济统计学-江西财经大学 中国大学慕课MOOC答案
- 《中国的土地政策》课件
- 债权债务抵消协议-合同模板
- 【MOOC】电工学-西北工业大学 中国大学慕课MOOC答案
- 第九版内科学糖尿病
- 专题12 简·爱-2024年中考语文复习文学名著必考篇目分层训练(原卷版)
- 【高考语文】2024年全国高考新课标I卷-语文试题评讲
- 客户满意度论文开题报告
- 2024-2025学年八年级上册历史期末复习选择题(解题指导+专项练习)原卷版
- 课桌椅人体工程学
评论
0/150
提交评论