版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东北育才中学2025届数学高三第一学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元2.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.3.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是()A.每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B.从2014年到2018年这5年,高铁运营里程与年价正相关C.2018年高铁运营里程比2014年高铁运营里程增长80%以上D.从2014年到2018年这5年,高铁运营里程数依次成等差数列4.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为()A. B.2 C. D.15.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为()A. B. C. D.6.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.7.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月8.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心9.已知,则“直线与直线垂直”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.11.下列函数中,在定义域上单调递增,且值域为的是()A. B. C. D.12.下列函数中,值域为R且为奇函数的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.已知是等比数列,且,,则__________,的最大值为__________.15.(5分)函数的定义域是____________.16.已知,是互相垂直的单位向量,若与λ的夹角为60°,则实数λ的值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.18.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.(1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.19.(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、、、这四个点中的任一位置.记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为.(1)分别求、、的值;(2)求的表达式.20.(12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的锐二面角的余弦值.21.(12分)设函数.(Ⅰ)讨论函数的单调性;(Ⅱ)若函数有两个极值点,求证:.22.(10分)已知在平面四边形中,的面积为.(1)求的长;(2)已知,为锐角,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.2、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.3、D【解析】
由折线图逐项分析即可求解【详解】选项,显然正确;对于,,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题4、C【解析】
根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.【详解】双曲线的离心率,则,,解得,所以焦点坐标为,所以,则双曲线渐近线方程为,即,不妨取右焦点,则由点到直线距离公式可得,故选:C.【点睛】本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.5、D【解析】
设,利用余弦定理,结合双曲线的定义进行求解即可.【详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.6、C【解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.7、C【解析】
根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.8、A【解析】
根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.9、B【解析】
由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.10、C【解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.11、B【解析】
分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【点睛】本题考查函数单调性和值域的判断问题,属于基础题.12、C【解析】
依次判断函数的值域和奇偶性得到答案.【详解】A.,值域为,非奇非偶函数,排除;B.,值域为,奇函数,排除;C.,值域为,奇函数,满足;D.,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.14、5【解析】,即的最大值为15、【解析】
要使函数有意义,则,即,解得,故函数的定义域是.16、【解析】
根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设(1,0),(0,1),则(,﹣1),λ(1,λ);又夹角为60°,∴()•(λ)λ=2cos60°,即λ,解得λ.【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)连结BM,推导出BC⊥BB1,AA1⊥BC,从而AA1⊥MC,进而AA1⊥平面BCM,AA1⊥MB,推导出四边形AMNP是平行四边形,从而MN∥AP,由此能证明MN∥平面ABC.(2)推导出△ABA1是等腰直角三角形,设AB,则AA1=2a,BM=AM=a,推导出MC⊥BM,MC⊥AA1,BM⊥AA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【详解】(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,所以,又因为,,所以平面,所以,又因为,所以是中点,取中点,连结,,因为是的中点,则且,所以且,所以四边形是平行四边形,所以,又因为平面,平面,所以平面.(图1)(图2)(2)因为,所以是等腰直角三角形,设,则,.在中,,所以.在中,,所以,由(1)知,则,,如图2,以为坐标原点,,,的方向分别为轴,轴,轴的正方向建立空间直角坐标系,则,,.所以,则,,设平面的法向量为,则即取得.故平面的一个法向量为,因为平面的一个法向量为,则.因为二面角为钝角,所以二面角的余弦值为.【点睛】本题考查线面平行的证明,考查了利用空间向量法求解二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1)见解析(2)【解析】
(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:∵为等边三角形,为的中点,∴∵平面底面,平面底面,∴底面平面,∴又由题意可知为正方形,又,∴平面平面,∴平面平面(2)如图建立空间直角坐标系,则,,,由已知,得,设平面的法向量为,则令,则,∴由(1)知平面的法向量可取为∴∴平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1),,,(2)【解析】
(1)根据机器人的进行规律可确定、、的值;(2)首先根据机器人行进规则知机器人沿轴行进步,必须沿轴负方向行进相同的步数,而余下的每一步行进方向都有两个选择(向上或向下),由此结合组合知识确定机器人的每一种走法关于的表达式,并得到的表达式,然后结合二项式定理及展开式的通项公式进行求解.【详解】解:(1),,(2)设为沿轴正方向走的步数(每一步长度为1),则反方向也需要走步才能回到轴上,所以,1,2,……,,(其中为不超过的最大整数)总共走步,首先任选步沿轴正方向走,再在剩下的步中选步沿轴负方向走,最后剩下的每一步都有两种选择(向上或向下),即等价于求中含项的系数,为其中含项的系数为故.【点睛】本题考查组合数、二项式定理,考查学生的逻辑推理能力,推理论证能力以及分类讨论的思想.20、(Ⅰ)见解析;(Ⅱ).【解析】试题分析:(1)取中点,连,,由等边三角形三边合一可知,,即证.(2)以,,为正方向建立空间直角坐标系,由向量法可求得平面与平面所成的锐二面角的余弦值.试题解析:(Ⅰ)证明:连,,则和皆为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版企业并购与重组合同:股权收购合同版B版
- 2024年规范化人力资源委托管理合同
- 2024跨境电子商务平台建设与运营合作协议
- 2024年高速路段交通安全设施采购合同
- 2024店铺市场推广合作合同2篇
- 2025年度文化创意产业财产抵押担保投资合同3篇
- 2025年度大型物流枢纽承包经营合同典范3篇
- 2024年网络云服务提供商托管协议
- 2024年新能源项目技术顾问聘任协议3篇
- 2024年度牙齿矫正前后口腔护理指导服务合同3篇
- 城市生命线安全…监测预警指挥平台建设方案
- 六年级数学《圆柱的体积》教案(一等奖)
- 2024CSCO恶性肿瘤患者营养治疗指南解读
- 常见化学专业词汇英文翻译
- 内科护理学智慧树知到期末考试答案章节答案2024年荆门职业学院
- (高清版)JTGT 5190-2019 农村公路养护技术规范
- 基于视觉果蔬识别的称重系统设计
- 体育初中学生学情分析总结报告
- 2024氢气长管拖车安全使用技术规范
- 部编版语文中考必背文言文7-9年级
- 《中外历史纲要(上)》期末专题复习提纲
评论
0/150
提交评论