黑龙江省哈尔滨三十二中2025届高二上数学期末统考模拟试题含解析_第1页
黑龙江省哈尔滨三十二中2025届高二上数学期末统考模拟试题含解析_第2页
黑龙江省哈尔滨三十二中2025届高二上数学期末统考模拟试题含解析_第3页
黑龙江省哈尔滨三十二中2025届高二上数学期末统考模拟试题含解析_第4页
黑龙江省哈尔滨三十二中2025届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨三十二中2025届高二上数学期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.2.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁3.某超市收银台排队等候付款的人数及其相应概率如下:排队人数01234概率0.10.16030.30.10.04则至少有两人排队的概率为()A.0.16 B.0.26C.0.56 D.0.744.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.5.已知点,,直线与线段相交,则实数的取值范围是()A.或 B.或C. D.6.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.37.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.8.在等比数列中,,,则等于()A. B.5C. D.99.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.10.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.11.在区间内随机取一个数则该数满足的概率为()A. B.C. D.12.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的弦AB的中点为M,O为坐标原点,则直线AB的斜率与直线OM的斜率之积等于_________14.双曲线的右焦点到C的渐近线的距离为,则C渐近线方程为______15.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________16.已知茎叶图记录了甲、乙两组各名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________.甲组乙组三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.18.(12分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.19.(12分)设函数.(1)求函数的单调区间;(2)求函数的极值.20.(12分)已知椭圆,四点中,恰有三点在椭圆上(1)求椭圆的方程;(2)设直线不经过点,且与椭圆相交于不同的两点.若直线与直线的斜率之和为,证明:直线过一定点,并求此定点坐标21.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值22.(10分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.2、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D3、D【解析】利用互斥事件概率计算公式直接求解【详解】由某超市收银台排队等候付款的人数及其相应概率表,得:至少有两人排队的概率为:故选:D【点睛】本题考查概率的求法、互斥事件概率计算公式,考查运算求解能力,是基础题4、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B5、B【解析】由可求出直线过定点,作出图象,求出和,数形结合可得或,即可求解.【详解】由可得:,由可得,所以直线:过定点,作出图象如图所示:,,若直线与线段相交,则或,所以实数的取值范围是或,故选:B6、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A7、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C8、D【解析】由等比数列的项求公比,进而求即可.【详解】由题设,,∴故选:D9、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.10、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A11、C【解析】求解不等式,利用几何概型的概率计算公式即可容易求得.【详解】求解不等式可得:,由几何概型的概率计算公式可得:在区间内随机取一个数则该数满足的概率为.故选:.12、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据点是弦的中点,为坐标原点,利用点差法求解.【详解】设,且,则,(1),(2)得:,,.又,,.故答案为:14、【解析】根据给定条件求出双曲线渐近线,再用点到直线的距离公式计算作答【详解】双曲线的渐近线为:,即,依题意,,即,解得,所以C渐近线方程为.故答案为:15、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16、【解析】根据中位数、平均数的定义,结合茎叶图进行计算求解即可.【详解】根据茎叶图可知:甲组名学生在一次英语听力测试中的成绩分别;乙组名学生在一次英语听力测试中的成绩分别,因为甲组数据的中位数为,所以有,又因为乙组数据的平均数为,所以有,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得三角形周长.【小问1详解】设点的坐标分别为,由题意知双曲线的左、右焦点坐标分别为、,直线的方程,与联立得,解得,代入的方程为分别解得.所以.【小问2详解】由(1)知,,,所以△的周长为.18、(1)证明见解析(2)答案不唯一,见解析【解析】(1)利用折叠前后的线段长度及勾股定理求证即可;(2)动点M满足时和,但时两种情况,利用线线平行或相交得到结论.【小问1详解】在折叠前的图中,如图:,E为上一点且,则,折叠后,所以,又,所以,所以为直角三角形.小问2详解】当动点M在线段上,满足,同样在线段上取,使得,则,当时,则,又且所以,且,所以四边形为平行四边形,所以,又平面,所以此时平面;当时,此时,但,所以四边形为梯形,所以与必然相交,所以与平面必然相交.综上,当动点M满足时,平面;当动点M满足,但时,与平面相交.19、(1)单调递减区间为和,单调递增区间为(2)极小值,极大值为【解析】(1)先对函数求导,然后根据导数的正负可求出函数的单调区间,(2)根据(1)中求得单调区间可求出函数的极值【小问1详解】.当变化时,,的变化情况如下表所示:00减极小值增极大值减的单调递减区间为和,单调递增区间为.【小问2详解】由(1)可知在处取得极小值,在处取得极大值.的极小值为,极大值为.20、(1)(2)证明见解析,定点【解析】(1)先判断出在椭圆上,再代入求椭圆方程;(2)假设斜率存在,设出直线,利用斜率之和为,求出之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可.【小问1详解】由对称性同时在椭圆上或同时不在椭圆上,从而在椭圆上,因此不在椭圆上,故在椭圆上,将,代入椭圆的方程,解得,所以椭圆的方程为【小问2详解】当直线斜率存在时,令方程为,由得所以得方程为,过定点当直线斜率不存在时,令方程为,由,即解得此时直线方程为,也过点综上,直线过定点.【点睛】本题关键点在于先假设斜率存在,设出直线,利用题目所给条件得到之间的关系,即可求出定点,再说明斜率不存在时,直线仍过该点即可,属于定点问题的常见解法,注意积累掌握.21、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹角的余弦值为22、(1)(2)【解析】设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,.又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论