版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁学院附中2025届高一数学第一学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要2.点P从O点出发,按逆时针方向沿周长为l的图形运动一周,O、P两点的距离y与点P所走路程x的函数关系如图所示,那么点P所走的图形是()A. B.C. D.3.下列图象是函数图象的是A. B.C. D.4.定义在上的偶函数满足:对任意的,,,有,且,则不等式的解集为A. B.C. D.5.若,则的值为()A. B.C.或 D.6.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.8.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.39.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:)A.6天 B.7天C.8天 D.9天10.函数的一个零点所在的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.12.已知奇函数满足,,若当时,,则______13.若函数在单调递增,则实数的取值范围为________14.已知,若,则实数的取值范围为__________15.已知,则______________16.使得成立的一组,的值分别为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值18.已知,,求以及的值19.已知函数.(1)判断的奇偶性;(2)判断在上的单调性,并用定义证明;(3)若关于x的方程在R上有四个不同的根,求实数t的取值范围.20.如图,在直三棱柱ABC-A1B1C1中,D、E分别为AB、BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线A1C1∥平面B1DE;(2)平面A1B1BA⊥平面A1C1F.21.在中,角所对的边分别为,满足.(1)求角的大小;(2)若,且,求的面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.2、C【解析】认真观察函数的图象,根据其运动特点,采用排除法,即可求解.【详解】观察函数的运动图象,可以发现两个显著特点:①点运动到周长的一半时,最大;②点的运动图象是抛物线,设点为周长的一半,如下图所示:图1中,因为,不符合条件①,因此排除选项A;图4中,由,不符合条件①,并且的距离不是对称变化的,因此排除选项D;另外,在图2中,当点在线段上运动时,此时,其图象是一条线段,不符合条件②,因此排除选项B.故选:C3、D【解析】由题意结合函数的定义确定所给图象是否是函数图象即可.【详解】由函数的定义可知,函数的每一个自变量对应唯一的函数值,选项A,B中,当时,一个自变量对应两个函数值,不合题意,选项C中,当时,一个自变量对应两个函数值,不合题意,只有选项D符合题意.本题选择D选项.【点睛】本题主要考查函数的定义及其应用,属于基础题.4、A【解析】根据对任意的,,,有,判断函数的单调性,结合函数的奇偶性和单调性之间的性质,将不等式转化为不等式组,数形结合求解即可详解】因为对任意的,,当,有,所以,当函数为减函数,又因为是偶函数,所以当时,为增函数,,,作出函数的图象如图:等价为或,由图可知,或,即不等式的解集为,故选A【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.5、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.6、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.7、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C8、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题9、B【解析】根据题意将给出的数据代入公式即可计算出结果【详解】因为,,,所以可以得到,由题意可知,所以至少需要7天,累计感染病例数增加至的4倍故选:B10、B【解析】根据零点存在性定理,计算出区间端点的函数值即可判断;【详解】解:因为,在上是连续函数,且,即在上单调递增,,,,所以在上存在一个零点.故选:.【点睛】本题考查函数的零点的范围,注意运用零点存在定理,考查运算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】正四棱柱的高是4,体积是16,则底面边长为2,底面正方形的对角线长度为,所以正四棱柱体对角线的长度为,四棱柱体对角线为外接球的直径,所以球的半径为,所以球的表面积为考点:正四棱柱外接球表面积12、【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解.【详解】因为,即是以周期为的周期函数.为奇函数且当时,,,当时,所以故答案为:13、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:14、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题15、100【解析】分析得出得解.【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键.16、,(不唯一)【解析】使得成立,只需,举例即可.【详解】使得成立,只需,所以,,使得成立的一组,的值分别为,故答案为:,(不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),递增区间为;(3)或.【解析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2×=1,∵f(x)=2sin(2x+),∴由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,即函数f(x)的递增区间为[kπ-,kπ+],k∈Z;(3)∵f(α)=2sin(2α+)=,即sin(2α+)=,∵α∈[0,π],∴2α+∈[,],∴2α+=或,∴α=或α=【点睛】关于三角函数图像需记住:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期关于正弦函数单调区间要掌握:当时,函数单调递增;当时,函数单调递减18、【解析】根据同角三角函数,求出,;再利用两角和差公式求解.【详解】,,【点睛】本题考查同角三角函数和两角和差公式,解决此类问题要注意在求解同角三角函数值时,角所处的范围会影响到函数值的正负.19、(1)是偶函数(2)在上单调递增,证明见解析(3)【解析】(1)利用函数奇偶性的定义,判断的关系即可得出结论;(2)任取,利用作差法整理即可得出结论;(3)由整理得,易得的最小值为,令,设,则原方程有4个不同的根等价于在上有2个不同的零点,从而可得出答案.【小问1详解】解:的定义域为R,∵,∴,∴是偶函数;【小问2详解】解:在上单调递增,证明如下:任取,则,∵,∴,另一方面,∴,∴,即,∴在上单调递增;【小问3详解】由整理得,由(1)(2)可知在上单调递减,在上单调递增,最小值为,令,则当时,每个a的值对应两个不同的x值,设,原方程有4个不同的根等价于在上有2个不同的零点,∴解得,即t的取值范围是.20、证明过程详见解析【解析】(1)先证明DE∥A1C1,即证直线A1C1∥平面B1DE.(2)先证明DE⊥平面AA1B1B,再证明A1F⊥平面B1DE,即证平面AA1B1B⊥平面A1C1F.【详解】证明:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵DE⊂平面B1DE,且A1C1⊄平面B1DE,∴A1C1∥平面B1DE;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年烧烤猪肉脯项目可行性研究报告
- 2024年指纹+IC卡考勤门禁机项目可行性研究报告
- 学习如何进行PLC的系统集成和调试
- 2024至2030年吹塑轮项目投资价值分析报告
- 2024至2030年全波底盘项目投资价值分析报告
- 2024年中国片式双门气体止回阀市场调查研究报告
- 建筑施工安全法规培训
- 中国传统文化解读与传播策略
- 青岛幼儿师范高等专科学校《传播战略与策划》2023-2024学年第一学期期末试卷
- 交通安全法规及文明出行教育内容
- 养护手册桥梁管理
- 家长会家校沟通主题班会
- PPP跟踪审计方案
- 校园一日安全巡查记录表(共1页)
- 等比数列的前n项和PPT课件
- 2021年全国高中数学联合竞赛试题及答案
- 江苏省南通市2021届新高考物理一模试卷含解析
- (完整版)公司企业HSE管理体系及制度
- 120-1阀讲义(完整版)
- 课程思政示范课程—课程思政矩阵图(示例)
- 中学德育工作会议记录
评论
0/150
提交评论