版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二、微分运算法则三、微分在近似计算中的应用第5节一、微分的概念函数的微分
第2章一、微分的概念
引例:
一块正方形金属薄片受温度变化的影响,问此薄片面积改变了多少?设薄片边长为x,面积为A,则面积的增量为关于△x
的线性主部高阶无穷小时为故称为函数在的微分当x
在取得增量时,变到边长由其的微分,定义:
若函数在点的增量可表示为(A
为不依赖于△x
的常数)则称函数而称为记作即定理:
函数在点可微的充要条件是即在点可微,定理:函数证:
“必要性”
已知在点可微,则故在点可导,且在点可微的充要条件是在点处可导,且即定理:函数在点可微的充要条件是在点处可导,且即“充分性”已知即在点可导,则说明:时,所以时很小时,有近似公式与是等价无穷小,当故当微分的几何意义当很小时,则有从而导数也叫作微商切线纵坐标的增量自变量的微分,记作记例如,基本初等函数的微分公式(见P71表)又如,二、微分运算法则设u(x),v(x)均可微,则(C
为常数)分别可微,的微分为微分形式不变5.复合函数的微分则复合函数例1.求解:例2.设求解:利用一阶微分形式不变性,有例3.
在下列括号中填入适当的函数使等式成立:说明:
上述微分的反问题是不定积分要研究的内容.注意注数学中的反问题往往出现多值性,例如三、微分在近似计算中的应用当很小时,使用原则:得近似等式:特别当很小时,常用近似公式:很小)证明:令得的近似值.解:
设取则例4.求的近似值.解:例5.计算例6.有一批半径为1cm的球
,为了提高球面的光洁度,解:
已知球体体积为镀铜体积为V
在时体积的增量因此每只球需用铜约为(g)用铜多少克.估计一下,每只球需要镀上一层铜,厚度定为0.01cm,内容小结1.微分概念
微分的定义及几何意义
可微可导2.微分运算法则微分形式不变性:(u
是自变量或中间变量)3.微分的应用近似
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论