版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1集合与常用逻辑用语第一部分真题分类一、单选题1.(2021·北京高考真题)已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件2.(2021·北京高考真题)已知集合,,则()A. B. C. D.3.(2021·浙江高考真题)设集合,,则()A. B. C. D.4.(2021·浙江高考真题)已知非零向量,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件5.(2021·全国高考真题(文))设集合,则()A. B. C. D.6.(2021·全国高考真题(理))设集合,则()A. B.C. D.7.(2021·全国高考真题(理))等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.(2021·全国高考真题(理))已知集合,,则()A. B. C. D.9.(2021·全国高考真题(理))已知命题﹔命题﹐,则下列命题中为真命题的是()A. B. C. D.10.(2021·全国高考真题(文))已知全集,集合,则()A. B. C. D.11.(2021·全国高考真题)设集合,,则()A. B. C. D.12.(2020·全国高考真题(理))已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3}13.(2020·天津高考真题)设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件14.(2020·北京高考真题)已知,则“存在使得”是“”的().A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件15.(2020·浙江高考真题)设集合S,T,SN*,TN*,S,T中至少有两个元素,且S,T满足:①对于任意x,yS,若x≠y,都有xyT②对于任意x,yT,若x<y,则S;下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素16.(2020·海南高考真题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3} B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}17.(2020·全国高考真题(理))已知集合,,则中元素的个数为()A.2 B.3 C.4 D.618.(2020·全国高考真题(理))设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.4二、填空题19.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.①②③④20.(2019·江苏高考真题)已知集合,,则_____.三、解答题21.已知等差数列的公差,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.22.设n为正整数,集合A=.对于集合A中的任意元素和,记M()=.(Ⅰ)当n=3时,若,,求M()和M()的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.第二部分模拟训练一、单选题1.设非空集合满足:当时,有.给出如下三个命题:①若,则;②若,则;③若,则.其中正确命题的个数是()A.0 B.1 C.2 D.32.已知直线是平面和平面的交线,异面直线,分别在平面和平面内.命题:直线,中至多有一条与直线相交;命题:直线,中至少有一条与直线相交;命题:直线,都不与直线相交.则下列命题中是真命题的为()A. B. C. D.3.下列命题中,不是真命题的是()A.命题“若,则”的逆命题.B.“”是“且”的必要条件.C.命题“若,则”的否命题.D.“”是“”的充分不必要条件.4.已知集合,,则=()A. B. C. D.5.下列命题中错误的是()A.命题“若,则”的逆否命题是真命题B.命题“”的否定是“”C.若为真命题,则为真命题D.已知,则“”是“”的必要不充分条件6.下列叙述中正确的是()A.若,则“”的充分条件是“”B.若,则“”的充要条件是“”C.命题“对任意,有”的否定是“存在,有”D.是一条直线,是两个不同的平面,若,则7.下列有关命题的说法正确的是()A.,使得成立.B.命题:任意,都有,则:存在,使得.C.命题“若且,则且”的逆命题为真命题.D.若数列是等比数列,则是的必要不充分条件.专题1集合与常用逻辑用语第一部分真题分类一、单选题1.(2021·北京高考真题)已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】若函数在上单调递增,则在上的最大值为,若在上的最大值为,比如,但在为减函数,在为增函数,故在上的最大值为推不出在上单调递增,故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,故选:A.2.(2021·北京高考真题)已知集合,,则()A. B. C. D.【答案】B【解析】由题意可得:,即.故选:B.3.(2021·浙江高考真题)设集合,,则()A. B. C. D.【答案】D【解析】由交集的定义结合题意可得:.故选:D.4.(2021·浙江高考真题)已知非零向量,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【答案】B【解析】若,则,推不出;若,则必成立,故“”是“”的必要不充分条件故选:B.5.(2021·全国高考真题(文))设集合,则()A. B. C. D.【答案】B【解析】,故,故选:B.6.(2021·全国高考真题(理))设集合,则()A. B.C. D.【答案】B【解析】因为,所以,故选:B.7.(2021·全国高考真题(理))等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件.若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件.故选:B.8.(2021·全国高考真题(理))已知集合,,则()A. B. C. D.【答案】C【解析】任取,则,其中,所以,,故,因此,.故选:C.9.(2021·全国高考真题(理))已知命题﹔命题﹐,则下列命题中为真命题的是()A. B. C. D.【答案】A【解析】由于,所以命题为真命题;由于,所以,所以命题为真命题;所以为真命题,、、为假命题.故选:A.10.(2021·全国高考真题(文))已知全集,集合,则()A. B. C. D.【答案】A【解析】由题意可得:,则.故选:A.11.(2021·全国高考真题)设集合,,则()A. B. C. D.【答案】B【解析】由题设有,故选:B.12.(2020·全国高考真题(理))已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3}【答案】A【解析】由题意可得:,则.故选:A.13.(2020·天津高考真题)设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.14.(2020·北京高考真题)已知,则“存在使得”是“”的().A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C【解析】(1)当存在使得时,若为偶数,则;若为奇数,则;(2)当时,或,,即或,亦即存在使得.所以,“存在使得”是“”的充要条件.故选:C.15.(2020·浙江高考真题)设集合S,T,SN*,TN*,S,T中至少有两个元素,且S,T满足:①对于任意x,yS,若x≠y,都有xyT②对于任意x,yT,若x<y,则S;下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素【答案】A【解析】首先利用排除法:若取,则,此时,包含4个元素,排除选项C;若取,则,此时,包含5个元素,排除选项D;若取,则,此时,包含7个元素,排除选项B;下面来说明选项A的正确性:设集合,且,,则,且,则,同理,,,,,若,则,则,故即,又,故,所以,故,此时,故,矛盾,舍.若,则,故即,又,故,所以,故,此时.若,则,故,故,即,故,此时即中有7个元素.故A正确.故选:A.16.(2020·海南高考真题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3} B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}【答案】C【解析】故选:C17.(2020·全国高考真题(理))已知集合,,则中元素的个数为()A.2 B.3 C.4 D.6【答案】C【解析】由题意,中的元素满足,且,由,得,所以满足的有,故中元素的个数为4.故选:C.18.(2020·全国高考真题(理))设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.4【答案】B【解析】求解二次不等式可得:,求解一次不等式可得:.由于,故:,解得:.故选:B.二、填空题19.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.①②③④【答案】①③④【解析】对于命题,可设与相交,这两条直线确定的平面为;若与相交,则交点在平面内,同理,与的交点也在平面内,所以,,即,命题为真命题;对于命题,若三点共线,则过这三个点的平面有无数个,命题为假命题;对于命题,空间中两条直线相交、平行或异面,命题为假命题;对于命题,若直线平面,则垂直于平面内所有直线,直线平面,直线直线,命题为真命题.综上可知,,为真命题,,为假命题,为真命题,为假命题,为真命题,为真命题.故答案为:①③④.20.(2019·江苏高考真题)已知集合,,则_____.【答案】.【解析】由题知,.三、解答题21.已知等差数列的公差,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.【答案】(1);(2)或;(3)【解析】(1),,,,,,由周期性可知,以为周期进行循环(2),,恰好有两个元素或即或或(3)由恰好有个元素可知:当时,,集合,符合题意;当时,,或因为为公差的等差数列,故又,故当时,如图取,,符合条件当时,,或因为为公差的等差数列,故又,故当时,如图取,,符合条件当时,,或因为为公差的等差数列,故又,故当时,如图取时,,符合条件当时,,或因为为公差的等差数列,故又,故当时,因为对应个正弦值,故必有一个正弦值对应三个点,必然有,即,即,,不符合条件;当时,因为对应个正弦值,故必有一个正弦值对应三个点,必然有,即,即,不是整数,故不符合条件;当时,因为对应个正弦值,故必有一个正弦值对应三个点,必然有或若,即,不是整数,若,即,不是整数,故不符合条件;综上:22.设n为正整数,集合A=.对于集合A中的任意元素和,记M()=.(Ⅰ)当n=3时,若,,求M()和M()的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.【答案】(1)2,1;(2)最大值为4;(3)【解析】(Ⅰ),.(Ⅱ)考虑数对只有四种情况:、、、,相应的分别为、、、,所以中的每个元素应有奇数个,所以中的元素只可能为(上下对应的两个元素称之为互补元素):、、、,、、、,对于任意两个只有个的元素,都满足是偶数,所以集合、、、满足题意,假设中元素个数大于等于,就至少有一对互补元素,除了这对互补元素之外还有至少个含有个的元素,则互补元素中含有个的元素与之满足不合题意,故中元素个数的最大值为.(Ⅲ),此时中有个元素,下证其为最大.对于任意两个不同的元素,满足,则,中相同位置上的数字不能同时为,假设存在有多于个元素,由于与任意元素都有,所以除外至少有个元素含有,根据元素的互异性,至少存在一对,满足,此时不满足题意,故中最多有个元素.第二部分模拟训练一、单选题1.设非空集合满足:当时,有.给出如下三个命题:①若,则;②若,则;③若,则.其中正确命题的个数是()A.0 B.1 C.2 D.3【答案】D【解析】由定义设非空集合满足:当时,有,符合定义的参数的值一定大于等于,符合条件的的值一定大于等于0或小于等于1,对于①若,,故必有,可得,故,故①正确;对于②若,,则,解得,故②正确;对于③若,则,可解得,故③正确.①②③都为真命题,所以正确命题的个数是,故选:D2.已知直线是平面和平面的交线,异面直线,分别在平面和平面内.命题:直线,中至多有一条与直线相交;命题:直线,中至少有一条与直线相交;命题:直线,都不与直线相交.则下列命题中是真命题的为()A. B. C. D.【答案】C【解析】由题意直线是平面和平面的交线,异面直线,分别在平面和平面内,可知,命题:直线,可以都与直线l相交,所以命题为假命题;命题:若直线,都不与直线相交,则直线,都平行于直线,那么直线,平行,与题意,为异面直线矛盾,所以命题为真命题;命题:直线,都不与直线相交,则直线,都平行于直线,那么直线,平行,与题意,为异面直线矛盾,所以命题为假命题;由复合命题真假可知,对于A,为假命题,为假命题,所以为假命题,对于B,为真命题,为假命题,所以为假命题,对于C,为真命题,为真命题,所以为真命题,对于D,为真命题,为假命题,所以为假命题,综上可知,C为真命题,故选:C.3.下列命题中,不是真命题的是()A.命题“若,则”的逆命题.B.“”是“且”的必要条件.C.命题“若,则”的否命题.D.“”是“”的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国消防通风低噪声柜式离心风机行业投资前景及策略咨询研究报告
- 2024至2030年中国防盗器五金配件行业投资前景及策略咨询研究报告
- 2024年磷化镓晶体(GAP)项目成效分析报告
- 2024至2030年中国蜂房式线绕过滤芯行业投资前景及策略咨询研究报告
- 2024至2030年中国艳古铜色电解着色剂行业投资前景及策略咨询研究报告
- 2024至2030年中国精氨酸数据监测研究报告
- 企业三级安全教育培训
- 2024至2030年中国焦性没食子酸数据监测研究报告
- 2024至2030年中国方型针阀滴量器数据监测研究报告
- 2024至2030年中国对焊式管座数据监测研究报告
- 人工智能智能制造设备维护与管理手册
- 2024年大学生就业创业知识竞赛题库及答案(共350题)
- 基于SICAS模型的区域农产品品牌直播营销策略研究
- 《算法设计与分析基础》(Python语言描述) 课件 第6章分支限界法
- 2024年福建省残疾人岗位精英职业技能竞赛(美甲师)参考试题库(含答案)
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 田径训练论文开题报告
- 个人健康管理平台使用操作教程
- 新版《铁道概论》考试复习试题库(含答案)
- DB11T 2315-2024消防安全标识及管理规范
- 商业银行开展非法集资风险排查活动情况报告
评论
0/150
提交评论