版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题9.2直线与圆的位置关系练基础练基础1.(福建高考真题(理))直线与圆相交于两点,则是“的面积为”的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分又不必要条件2.(2018·北京高考真题(理))在平面直角坐标系中,记为点到直线的距离,当、变化时,的最大值为()A. B.C. D.3.(2021·全国高二单元测试)已知直线与直线垂直,且与圆相切,切点位于第一象限,则直线的方程是().A. B.C. D.4.(2020·北京高考真题)已知半径为1的圆经过点,则其圆心到原点的距离的最小值为().A.4 B.5 C.6 D.75.【多选题】(2021·吉林白城市·白城一中高二月考)若直线上存在点,过点可作圆:的两条切线,,切点为,,且,则实数的取值可以为()A.3 B.C.1 D.6.(2022·江苏高三专题练习)已知大圆与小圆相交于,两点,且两圆都与两坐标轴相切,则____7.(江苏高考真题)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________.8.(2018·全国高考真题(文))直线与圆交于两点,则________.9.(2021·湖南高考真题)过圆的圆心且与直线垂直的直线方程为___________10.(2020·浙江省高考真题)设直线与圆和圆均相切,则_______;b=______.练提升TIDHNEG练提升TIDHNEG1.(2020·全国高考真题(理))若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+2.【多选题】(2021·全国高考真题)已知点在圆上,点、,则()A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆,则下列说法正确的是()A.圆的半径为B.圆截轴所得的弦长为C.圆上的点到直线的最小距离为D.圆与圆相离4.(2021·全国高三专题练习)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的取值范围是_______.5.(2021·富川瑶族自治县高级中学高一期中(理))直线被圆截得的弦长为,则直线的倾斜角为________.6.(2021·昆明市·云南师大附中高三月考(文))已知圆O:x2+y2=4,以A(1,)为切点作圆O的切线l1,点B是直线l1上异于点A的一个动点,过点B作直线l1的垂线l2,若l2与圆O交于D,E两点,则AED面积的最大值为_______.7.(2021·全国高三专题练习)已知的三个顶点的坐标满足如下条件:向量,,,则的取值范围是________8.(2021·全国高三专题练习)已知x、,时,求的最大值与最小值.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知的内切圆的圆心在轴正半轴上,半径为,直线截圆所得的弦长为.(1)求圆方程;(2)若点的坐标为,求直线和的斜率;(3)若,两点在轴上移动,且,求面积的最小值.10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线:,半径为2的圆与相切,圆心在轴上且在直线的上方(1)求圆的方程;(2)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.练真题TIDHNEG练真题TIDHNEG1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的()A.充分没必要条件 B.必要不充分条件C.充要条件 D.既不充分也没必要条件2.(2021·北京高考真题)已知直线(为常数)与圆交于点,当变化时,若的最小值为2,则A. B. C. D.3.(2020·全国高考真题(理))已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为()A. B. C. D.4.【多选题】(2021·全国高考真题)已知直线与圆,点,则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆的圆心重合,长轴长等于圆的直径,那么短轴长等于______.6.(2019·北京高考真题(文))设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.专题9.2直线与圆的位置关系练基础练基础1.(福建高考真题(理))直线与圆相交于两点,则是“的面积为”的()A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分又不必要条件【答案】A【解析】由时,圆心到直线的距离.所以弦长为.所以.所以充分性成立,由图形的对成性当时,的面积为.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记为点到直线的距离,当、变化时,的最大值为()A. B.C. D.【答案】C【解析】为单位圆上一点,而直线过点,所以的最大值为,选C.3.(2021·全国高二单元测试)已知直线与直线垂直,且与圆相切,切点位于第一象限,则直线的方程是().A. B.C. D.【答案】A【分析】根据垂直关系,设设直线的方程为,利用直线与圆相切得到参数值即可.【详解】由题意,设直线的方程为.圆心到直线的距离为,得或(舍去),故直线的方程为.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点,则其圆心到原点的距离的最小值为().A.4 B.5 C.6 D.7【答案】A【分析】求出圆心的轨迹方程后,根据圆心到原点的距离减去半径1可得答案.【详解】设圆心,则,化简得,所以圆心的轨迹是以为圆心,1为半径的圆,所以,所以,当且仅当在线段上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线上存在点,过点可作圆:的两条切线,,切点为,,且,则实数的取值可以为()A.3 B.C.1 D.【答案】BCD【分析】先由题意判断点P在圆上,再联立直线方程使判别式解得参数范围,即得结果.【详解】点在直线上,,则,由图可知,中,,即点P在圆上,故联立方程,得,有判别式,即,解得,故A错误,BCD正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆与小圆相交于,两点,且两圆都与两坐标轴相切,则____【答案】【分析】由题意可知大圆与小圆都在第一象限,进而设圆的圆心为,待定系数得或,再结合两点间的距离求解即可.【详解】由题知,大圆与小圆都在第一象限,设与两坐标轴都相切的圆的圆心为,其方程为,将点或代入,解得或,所以,,可得,,所以.故答案为:7.(江苏高考真题)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________.【答案】【解析】∵圆C的方程为x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x-4)2+y2=4与直线y=kx-2有公共点即可.设圆心C(4,0)到直线y=kx-2的距离为d,即3k2≤4k,∴0≤k≤,故可知参数k的最大值为.8.(2018·全国高考真题(文))直线与圆交于两点,则________.【答案】【解析】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.9.(2021·湖南高考真题)过圆的圆心且与直线垂直的直线方程为___________【答案】【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由可得,所以圆心为,由可得,所以直线的斜率为,所以与直线垂直的直线的斜率为,所以所求直线的方程为:,即,故答案为:.10.(2020·浙江省高考真题)设直线与圆和圆均相切,则_______;b=______.【答案】【解析】设,,由题意,到直线的距离等于半径,即,,所以,所以(舍)或者,解得.故答案为:练提升TIDHNEG练提升TIDHNEG1.(2020·全国高考真题(理))若直线l与曲线y=和x2+y2=都相切,则l的方程为()A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+【答案】D【分析】根据导数的几何意义设出直线的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.2.【多选题】(2021·全国高考真题)已知点在圆上,点、,则()A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,【答案】ACD【分析】计算出圆心到直线的距离,可得出点到直线的距离的取值范围,可判断AB选项的正误;分析可知,当最大或最小时,与圆相切,利用勾股定理可判断CD选项的正误.【详解】圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下图所示:当最大或最小时,与圆相切,连接、,可知,,,由勾股定理可得,CD选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆,则下列说法正确的是()A.圆的半径为B.圆截轴所得的弦长为C.圆上的点到直线的最小距离为D.圆与圆相离【答案】BC【分析】将圆的一般方程转化为标准方程即可得半径可判断A;利用几何法求出弦长可判断B;求出圆心到直线的距离再减去半径可判断C;求出圆的圆心和半径,比较圆心距与半径之和的大小可判断D,进而可得正确选项.【详解】对于A:由可得,所以的半径为,故选项A不正确;对于B:圆心为到轴的距离为,所以圆截轴所得的弦长为,故选项B正确;对于C:圆心到直线的距离为,所以圆上的点到直线的最小距离为,故选项C正确;对于D:由可得,所以圆心,半径,因为,所以两圆相外切,故选项D不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,为半径的圆与圆有公共点,则的取值范围是_______.【答案】【分析】求出圆的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由可得,因此圆的圆心为,半径为1,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,只需点到直线的距离,即,所以,解得,所以的取值范围是,故答案为:.5.(2021·富川瑶族自治县高级中学高一期中(理))直线被圆截得的弦长为,则直线的倾斜角为________.【答案】【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k,然后利用斜率等于倾斜角的正切值求解.【详解】直线被圆截得的弦长为,所以,圆心到直线的距离,即,解得.设直线的倾斜角为,则,则.因此,直线的倾斜角为.故答案为:.6.(2021·昆明市·云南师大附中高三月考(文))已知圆O:x2+y2=4,以A(1,)为切点作圆O的切线l1,点B是直线l1上异于点A的一个动点,过点B作直线l1的垂线l2,若l2与圆O交于D,E两点,则AED面积的最大值为_______.【答案】2【分析】由切线性质得,到直线的距离等于到的距离,因此,设到距离为,把面积用表示,然后利用导数可得最大值.【详解】根据题意可得图,,所以,因此到直线的距离等于到的距离,,过点作直线的垂线,垂足为,记,则弦,设三角形的面积为,所以,将视为的函数,则当时,,函数单调递增;当时,,函数单调递减,所以函数有最大值,当时取到最大值,,故面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知的三个顶点的坐标满足如下条件:向量,,,则的取值范围是________【答案】【分析】先求出点A的轨迹是以为圆心,为半径的圆.过原点O作此圆的切线,切点分别为M、N,如图所示,连接,,得到.所以,,即得解.【详解】由题得所以点A的轨迹是以为圆心,为半径的圆.过原点O作此圆的切线,切点分别为M、N,如图所示,连接,,则向量与的夹角的范围是.由图可知.∵,由知,∴,.∴.故的取值范围为.故答案为:8.(2021·全国高三专题练习)已知x、,时,求的最大值与最小值.【答案】最小值是1,最大值是【分析】根据表示圆,设表示关于原点、x轴、y轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】的图形是圆,既是轴对称图形,又是中心对称图形.设,由式子的对称性得知的图形是关于原点、x轴、y轴均对称的正方形.如图所示:当b变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b的最值问题.当时,正方形与圆没有公共点;当时,正方形与圆相交于点,若令直线与圆相切,则,解得,所以当时,正方形与圆相切;当时,正方形与圆没有公共点,故的最小值是1,最大值是.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知的内切圆的圆心在轴正半轴上,半径为,直线截圆所得的弦长为.(1)求圆方程;(2)若点的坐标为,求直线和的斜率;(3)若,两点在轴上移动,且,求面积的最小值.【答案】(1);(2);(3).【分析】(1)设的内切圆的圆心,先求得圆心到直线的距离,再根据直线截圆所得的弦长为求解;(2)当直线和的斜率不存在时,设直线方程为,易知不成立;当直线和的斜率存在时,设直线方程为,然后由圆心到直线的距离等于半径求解;(3)根据,设,进而得到直线AC和直线BC的斜率,写出直线AC和BC的方程,联立求得点C的坐标,进而得到坐标系的最小值求解.【详解】(1)设的内切圆的圆心,圆心到直线的距离为,又因为直线截圆所得的弦长为,所以,解得,所以圆方程;(2)当直线和的斜率不存在时,设直线方程为,则圆心到直线的距离,不成立,当直线和的斜率存在时,设直线方程为,即,圆心到直线的距离,解得;(3)因为,设,所以直线AC的斜率为:,同理直线BC的斜率为:,所以直线AC的方程为:,直线BC的方程为:,由,解得,即,又,当时,点C的纵坐标取得最小值,所以面积的最小值..10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线:,半径为2的圆与相切,圆心在轴上且在直线的上方(1)求圆的方程;(2)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1);(2)存在,.【分析】(1)设出圆心坐标,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出的值(注意范围),则圆的方程可求;(2)当直线的斜率不存在时,直接根据位置关系分析即可,当直线的斜率存在时,设出直线方程并联立圆的方程,由此可得坐标的韦达定理形式,根据结合韦达定理可求点的坐标.【详解】解:(1)设圆心,∵圆心在的上方,∴,即,∵直线:,半径为2的圆与相切,∴,即,解得:或(舍去),则圆方程为;(2)当直线轴,则轴平分,当直线的斜率存在时,设的方程为,,,,由得,,所以,若轴平分,则,即,整理得:,即,解得:,当点,能使得总成立.练真题TIDHNEG练真题TIDHNEG1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的()A.充分没必要条件 B.必要不充分条件C.充要条件 D.既不充分也没必要条件【答案】C【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”“直线与圆相切”,因此充分性成立;“直线与圆相切”“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线(为常数)与圆交于点,当变化时,若的最小值为2,则A. B. C. D.【答案】C【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出【详解】由题可得圆心为,半径为2,则圆心到直线的距离,则弦长为,则当时,弦长取得最小值为,解得.故选:C.3.(2020·全国高考真题(理))已知⊙M:,直线:,为上的动点,过点作⊙M的切线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于区块链的医疗数据完整性保护策略
- 江苏省宿迁市(2024年-2025年小学五年级语文)人教版课后作业(上学期)试卷及答案
- 礼品行业的创新商业模式探讨
- 2024年度棉花采购合同中的违约责任规定
- 畜禽饲料营养优化
- 2024年度医疗设备维修承包合同
- 2024年度农产品订购合同:橙子供货与收购协议
- 2024年度软件公司软件许可合同
- 2024版出租房租赁合同:甲方与乙方的租赁条件
- 2024年度蔬菜购销及独家代理合同
- 走进故宫 知到智慧树网课答案
- 《新能源汽车概论》课件-6新能源汽车空调系统结构及工作原理
- 安川g7变频器说明书-安川变频器g7面板操作说明
- 国开2024年《法律基础》形考作业1-4答案
- 《剧院魅影:25周年纪念演出》完整中英文对照剧本
- 蒋诗萌小品《谁杀死了周日》台词完整版
- DBJ-T 15-98-2019 建筑施工承插型套扣式钢管脚手架安全技术规程
- 用英语写一个红色人物的故事
- 城市排水工程图纸审查要点
- 高三一轮复习生物5.1植物生长素课件
- 川教版四年级英语上册全册练习含答案
评论
0/150
提交评论