版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽合肥寿春中学高一上数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数,满足,则的最小值是()A.18 B.9C.6 D.22.函数的单调递减区间是A. B.C. D.3.圆关于直线对称的圆的方程为A. B.C. D.4.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.5.已知函数为偶函数,则A.2 B.C. D.6.已知集合,,,则实数a的取值集合为()A. B.C. D.7.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且8.要得到函数的图象,只需将函数的图象向()平移()个单位长度A.左 B.右C.左 D.右9.函数与则函数所有零点的和为A.0 B.2C.4 D.810.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______12.函数的定义域是________13.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____14.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.15.设,,则的取值范围是______.16.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值(2)求的值.18.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<019.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值20.已知函数(其中,,)图象上两相邻最高点之间距离为,且点是该函数图象上的一个最高点(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,得到函数的图象,若恒有,求实数的最小值.21.(1)计算:;(2)已知,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”2、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质3、A【解析】由题意得,圆心坐标为,设圆心关于直线的对称点为,则,解得,所以对称圆方程为考点:点关于直线的对称点;圆的标准方程4、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.5、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】先解出集合A,再根据确定集合B的元素,可得答案.【详解】由题意得,,∵,,∴实数a的取值集合为,故选:C.7、A【解析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A8、C【解析】因为,由此可得结果.【详解】因为,所以其图象可由向左平移个单位长度得到.故选:C.9、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等10、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用求解向量间的夹角即可【详解】因为,所以,因为,所以,即,所以,所以,因为向量夹角取值范围是,所以向量与向量的夹角为【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意12、##【解析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.故答案为:.13、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题14、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.15、【解析】由已知求得,然后应用诱导公式把求值式化为一个角的一个三角函数形式,结合正弦函数性质求得范围【详解】,,所以,所以,,,,故答案为:16、【解析】解一元二次不等式,结合新定义即可得到结果.【详解】∵,∴,∴,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由两边平方可得,利用同角关系;(2)由(1)可知从而.【详解】(1)∵.∴,即,(2)由(1)知<0,又∴∴【点睛】本题考查三角函数化简求值,涉及同角三角函数基本关系和整体代入的思想,属于中档题18、(1)奇函数(2)见解析(3)【解析】(1)先求函数f(x)的定义域,然后检验与f(x)的关系即可判断;(2)利用单调性的定义可判断f(x)在(﹣1,1)上单调性;(3)结合(2)中函数的单调性及函数的定义域,建立关于x的不等式,可求【详解】(1)的定义域为(-1,1)因为,所以为奇函数(2)为减函数.证明如下:任取两个实数,且,===<0<0,所以在(-1,1)上为单调减函数(3)由题意:,由(1)、(2)知是定义域内单调递减的奇函数即不等式的解集为(,)【点睛】本题主要考查了函数单调性及奇偶性的定义的应用,及函数单调性在求解不等式中的应用19、(1)见解析;(2);(3).【解析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【详解】(1)任意,,因为,,所以,所以,即是“1距”增函数(2).因为是“距”增函数,所以恒成立,因为,所以在上恒成立,所以,解得,因为,所以.(3)因为,,且为“2距”增函数,所以时,恒成立,即时,恒成立,所以,当时,,即恒成立,所以,得;当时,,得恒成立,所以,得,综上所述,得.又,因为,所以,当时,若,取最小值为;当时,若,取最小值.因为在R上是单调递增函数,所以当,的最小值为;当时的最小值为,即.【点睛】本题考查了函数的综合知识,考查了函数的单调性与最值,考查了恒成立问题,考查了分类讨论思想的运用,属于中档题20、(1)(2)最小值为4【解析】(1)由图象上两相邻最高点之间的距离为,可知周期,点是该函数图象上的一个最高点,可知,故,将点代入解析式即可得,函数解析式即可求得;(2)利用函数平移的性质即可求得平移后的函数,由恒有,可知函数在处取得最大值,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解密01 名词、冠词、代词与语法填空(讲义)-【高频考点解密】高考英语二轮复习讲义+分层训练(浙江专用)
- 2025高考化学高三化学大二轮专项专题小题各个击破 题型16 微型工艺流程
- 扬大附中东部分校2024-2025学年度第一学期期中考试(数学试卷)
- 湖北省襄阳市枣阳市吴店镇第二中学2024-2025学年七年级上学期11月月考地理试题(无答案)
- 新高考人民版历史课件 必修一 专题三 近代中
- 高一 人教版 地理 第三单元《水循环(第1课时)》课件
- 2023-2024学年湖南省邵阳市绥宁一中八年级(上)竞赛数学试卷
- 2025届四川省泸州市高三第一次质量诊断性考试(一模)数学试题
- 课《表里的生物课件》
- 《春风沉醉的晚上》课件
- 2024年高素质农民职业技能大赛(农业经理人)赛项考试题库-上(单选题)
- 第四届“长城杯”网络安全大赛(高校组)初赛备赛试题库-上(单选题部分)
- 2024食品安全法试题库(带答案)
- (高清版)DBJ33T 1310-2024 可回收预应力锚杆应用技术规程
- 2024义务教育艺术新课标课程标准2022年版考试题库及答案
- 八年级生物下册学习资料
- 武汉烟草部分岗位2024年公开招聘历年(高频重点复习提升训练)共500题附带答案详解
- 波形护栏安装施工合同
- 七年级上册历史-七上历史 期中复习【课件】
- 瑜伽合同范本
- 2024年初中体育课教学设计舞龙教案
评论
0/150
提交评论