2025届山西省忻州巿第一中学高二上数学期末检测模拟试题含解析_第1页
2025届山西省忻州巿第一中学高二上数学期末检测模拟试题含解析_第2页
2025届山西省忻州巿第一中学高二上数学期末检测模拟试题含解析_第3页
2025届山西省忻州巿第一中学高二上数学期末检测模拟试题含解析_第4页
2025届山西省忻州巿第一中学高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省忻州巿第一中学高二上数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”2.与直线平行,且经过点(2,3)的直线的方程为()A. B.C. D.3.如图,执行该程序框图,则输出的的值为()A. B.2C. D.34.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.5.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.6.下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cm B.20cmC.25cm D.30cm7.已知l,m是两条不同的直线,是两个不同的平面,且,则()A.若,则 B.若,则C.若,则 D.若,则8.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:509.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.10.已知数列的前项和为,满足,,,则()A. B.C.,,成等差数列 D.,,成等比数列11.设,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知中,角,,的对边分别为,,,且,,成等比数列,则这个三角形的形状是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.钝角三角形二、填空题:本题共4小题,每小题5分,共20分。13.如图,在棱长都为的平行六面体中,,,两两夹角均为,则________;请选择该平行六面体的三个顶点,使得经过这三个顶点的平面与直线垂直.这三个顶点可以是________14.过点且与直线垂直的直线方程为______15.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.16.如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为各项均为正数的等比数列,若(1)求数列的通项公式;(2)求数列的前n项和18.(12分)已知函数,(1)讨论的单调性;(2)若时,对任意都有恒成立,求实数的最大值19.(12分)已知椭圆C:的左右焦为,,点是该椭圆上任意一点,当轴时,,(1)求椭圆C的标准方程;(2)记,求实数m的最大值20.(12分)已知三角形内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.21.(12分)在如图所示的多面体中,且,,,且,,且,平面,(1)求证:;(2)求平面与平面夹角的余弦值22.(10分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由全称命题的否定是特称命题即得.【详解】“任意”改为“存在”,否定结论即可.命题“,”的否定形式是“,”.故选:C.2、C【解析】由直线平行及直线所过的点,应用点斜式写出直线方程即可.【详解】与直线平行,且经过点(2,3)的直线的方程为,整理得故选:C3、B【解析】根据程序流程图依次算出的值即可.【详解】,第一次执行,,第二次执行,,第三次执行,,所以输出.故选:B4、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.5、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决6、B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B7、B【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系分析选项A,C,D,由平面与平面垂直的判定定理判定选项D.【详解】选项A.由,,直线l,m可能相交、平行,异面,故不正确.选项B.由,,则,故正确.选项C.由,,直线l,m可能相交、平行,异面,故不正确.选项D.由,,则可能相交,可能平行,故不正确.故选:B8、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.9、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D10、C【解析】写出数列前几项,观察规律,找到数列变化的周期,再依次去判断各项的说法即可解决.【详解】数列中,,,,则此数列为1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即数列的各项是周期为6数值循环重复的一列数,选项A:,,则.判断错误;选项B:由,可知当时,.判断错误;选项C:,则,即,,成等差数列.判断正确;选项D:,,则,,即,,不能构成等比数列.判断错误.故选:C11、B【解析】,,所以是必要不充分条件,故选B.考点:1.指、对数函数的性质;2.充分条件与必要条件.12、B【解析】根据题意求出,结合余弦定理分情况讨论即可.【详解】解:因为,所以.由题意得,利用余弦定理得:.当,即时,,即,解得:.此时三角形为等边三角形;当,即时,,不成立.所以三角形的形状是等边三角形.故选:B.【点睛】本题主要考查利用余弦定理判断三角形的形状,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.点或点(填出其中一组即可)【解析】(1)以向量,,为基底分别表达出向量和,展开即可解决;(2)由上一问可知,用上一问同样的方法可以证明出,这样就证明了平面与直线垂直.【详解】(1)令,,,则,则有,故(2)令,,,则,则有,故故,即又由(1)之,,故直线垂直于平面同理可证直线垂直于平面故答案为:0;点或点14、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:15、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;16、【解析】由题意,二面角等于,根据,结合向量的运算,即可求解.【详解】由题意,二面角等于,可得向量,,因为,可得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用等比数列通项公式列出方程组,可求解,,从而写出;(2)化简数列,裂项相消法求和即可.【小问1详解】设数列的公比为,∵,∴,即①∵,∴②②÷①,解得∴∴【小问2详解】∵,∴∴∴18、(1)答案见解析;(2).【解析】(1)利用导数与单调性的关系分类讨论即得;(2)由题可得在上恒成立,构造函数,利用导数求函数的最值即可.【小问1详解】的定义域为,且当时,显然,在定义域上单调递增;当时,令,得则有:极大值即在上单调递增,在上单调递减,综上所述,当时,在定义域上单调递增;当时,在上单调递增,在上单调递减.【小问2详解】当时,,对于满足恒成立,在上恒成立,令,只需∴,,,令,则,在上单调递增,又,,存在唯一的,使得,即,两边取自然对数得,极小值,则的最大值为19、(1)(2)【解析】(1)利用椭圆的定义及勾股定理可求解;(2)问题转化为在轴截距的问题,临界条件为直线与椭圆相切,求解即可.【小问1详解】因为,,所以,∴,所以椭圆标准方程为:【小问2详解】要求的最值,即求直线在轴截距的最值,可知当直线与椭圆相切时,m取得最值.联立方程:,整理得,解得所以实数m的最大值为20、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因为,所以.因为角为钝角,所以角为锐角,所以小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=21、(1)证明见解析(2)【解析】(1)根据线面垂直的性质可得,,如图所示,以为坐标原点建立空间直角坐标系,证明即可得证;(2)求出平面与平面的法向量,再利用向量法即可得解.【小问1详解】证明:因为平面,平面,平面,所以,且,因为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论