2025届江苏省南通市如东县数学高一上期末教学质量检测模拟试题含解析_第1页
2025届江苏省南通市如东县数学高一上期末教学质量检测模拟试题含解析_第2页
2025届江苏省南通市如东县数学高一上期末教学质量检测模拟试题含解析_第3页
2025届江苏省南通市如东县数学高一上期末教学质量检测模拟试题含解析_第4页
2025届江苏省南通市如东县数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南通市如东县数学高一上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-62.已知,那么下列结论正确的是()A. B.C. D.3.已知集合,若,则()A.-1 B.0C.2 D.34.已知幂函数的图像过点,若,则实数的值为A. B.C. D.5.若,,,,则()A. B.C. D.6.满足不等式成立的的取值集合为()A.B.C.D.7.如果函数是定义在上的奇函数,当时,函数的图象如图所示,那么不等式的解集是A. B.C. D.8.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}9.某学校大门口有一座钟楼,每到夜晚灯光亮起都是一道靓丽的风景,有一天因停电导致钟表慢10分钟,则将钟表拨快到准确时间分针所转过的弧度数是()A. B.C. D.10.函数的单调递增区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则ab=_____________.12.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________13.的值为__________14.若函数fx=-x+3,x≤2,logax,x>2(a>0且a≠1).①若a=12,则f15.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________16.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各题:(1);(2).18.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以天计),每件的销售价格(单位:元)与时间(单位:天)的函数关系近似满足(为常数,且),日销售量(单位:件)与时间(单位:天)的部分数据如下表所示:已知第天的日销售收入为元(1)求的值;(2)给出以下四个函数模型:①;②;③;④请你根据上表中数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为(单位:元),求的最小值19.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.20.一家货物公司计划在距离车站不超过8千米的范围内征地建造仓库,经过市场调查了解到下列信息:征地费用(单位:万元)与仓库到车站的距离(单位:千米)的关系为.为了交通方便,仓库与车站之间还要修一条道路,修路费用(单位:万元)与仓库到车站的距离(单位:千米)成正比.若仓库到车站的距离为3千米时,修路费用为18万元.设为征地与修路两项费用之和.(1)求的解析式;(2)仓库应建在离车站多远处,可使总费用最小,并求最小值21.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】首先根据题意得到,再根据的奇偶性求解即可.【详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D2、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.3、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C4、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.5、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.6、A【解析】先求出一个周期内不等式的解集,再结合余弦函数的周期性即可求解.【详解】解:由得:当时,因为的周期为所以不等式的解集为故选:A.7、B【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.考点:奇函数的性质,余弦函数的图象,数形结合思想.8、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题9、A【解析】由题可得分针需要顺时针方向旋转.【详解】分针需要顺时针方向旋转,即弧度数为.故选:A.10、C【解析】根据诱导公式变性后,利用正弦函数的递减区间可得结果.【详解】因为,由,得,所以函数的单调递增区间是.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.12、【解析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.13、【解析】根据特殊角的三角函数值与对数的运算性质计算可得;【详解】解:故答案为:14、①.-2②.1<a≤2【解析】先计算f-1的值,再计算ff-1【详解】当a=12时,所以f-1所以ff当x≤2时,fx当x=2时,fx=-x+3取得最小值当0<a<1时,且x>2时,f(x)=log此时函数无最小值.当a>1时,且x>2时,f(x)=log要使函数有最小值,则必须满足loga2≥1,解得故答案为:-2;1<a≤2.15、(0,1)【解析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可.【详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1.故答案为(0,1)【点睛】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础.16、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用指对幂运算性质化简求值;(2)利用对数运算性质化简求值.【小问1详解】原式.【小问2详解】原式.18、(1);(2);(3).【解析】(1)根据第10天的日销售收入,得到,即可求解;(2)由数据知先增后减,选择②,由对称性求得实数的值,再利用进而列出方程组,求得的值,从而求得函数的解析式;(3)根据(2)求得的解析式,然后利用基本不等式和函数的单调性分别求得各段的最小值,比较得到结论.【详解】(1)因为第10天的日销售收入为505元,所以,即,解得.(2)由表格中的数据知,当时间变换时,先增后减,函数模型:①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,所以日销售量与时间的变化的关系式为.(3)由(2)知,所以,即,当时,由基本不等式,可得,当且仅当时,即时等号成立,当时,为减函数,所以函数的最小值为,综上可得,当时,函数取得最小值【点睛】求解所给函数模型解决实际问题的关注点:1、认清所给函数模型,弄清哪些量为待定系数;2、根据已知利用待定系数法,列出方程,确定函数模型中的待定系数;3、结合函数的基本形式,利用函数模型求解实际问题,19、(1)(2)【解析】(1)根据幂函数的定义可得,求出的值,再检验即可得出答案.(2)先求出函数的值域,即得出集合,然后由题意知,根据集合的包含关系得到不等式组,从而求出答案.【小问1详解】由幂函数定义,知,解得或,当时,的图象不关于轴对称,舍去,当时,的图象关于轴对称,因此.【小问2详解】当时,的值域为,则集合,由题意知,得,解得.20、(1),;(2)当仓库建在离车站5千米时,总费用最少,最小值为70万元.【解析】(1)先设,依题意求参数,即得的解析式;(2)先整理函数,再利用基本不等式求最值,即得函数最小值及取最小值的条件.【详解】解:(1)根据题意,设修路费用,,解得,.,;(2)=,当且仅当即时取等号.当仓库建在离车站5千米时,总费用最少,最小值为70万元.21、(1)(2)(3)【解析】(Ⅰ)根据图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论