四川省内江铁路中学2025届高二上数学期末达标检测试题含解析_第1页
四川省内江铁路中学2025届高二上数学期末达标检测试题含解析_第2页
四川省内江铁路中学2025届高二上数学期末达标检测试题含解析_第3页
四川省内江铁路中学2025届高二上数学期末达标检测试题含解析_第4页
四川省内江铁路中学2025届高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省内江铁路中学2025届高二上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.222.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件3.已知等差数列的公差为,前项和为,等比数列的公比为,前项和为.若,则()A. B.C. D.4.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.5.已知抛物线的准线方程为,则此抛物线的标准方程为()A. B.C. D.6.在中,内角的对边分别为,若,则角为A. B.C. D.7.设,,若,其中是自然对数底,则()A. B.C. D.8.在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数,平均感染周期为4天,那么感染人数超过1000人大约需要()(初始感染者传染个人为第一轮传染,这个人每人再传染个人为第二轮传染)A.20天 B.24天C.28天 D.32天9.双曲线:的渐近线与圆:在第一、二象限分别交于点、,若点满足(其中为坐标原点),则双曲线的离心率为()A. B.C. D.10.在正三棱锥S−ABC中,M、N分别是棱SC、BC的中点,且,若侧棱,则正三棱锥S−ABC外接球的表面积是()A. B.C. D.11.已知数列为等比数列,若,则的值为()A.-4 B.4C.-2 D.212.我国古代数学名著《算法统宗》记有行程减等问题:三百七十八里关,初行健步不为难次日脚痛减一半,六朝才得到其关.要见每朝行里数,请公仔细算相还.意为:某人步行到378里的要塞去,第一天走路强壮有力,但把脚走痛了,次日因脚痛减少了一半,他所走的路程比第一天减少了一半,以后几天走的路程都比前一天减少一半,走了六天才到达目的地.请仔细计算他每天各走多少路程?在这个问题中,第四天所走的路程为()A.96 B.48C.24 D.12二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标为________14.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.15.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________16.若x,y满足约束条件,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且)的图象经过点和

.(1)求实数,的值;(2)若,求数列前项和

.18.(12分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆的标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:19.(12分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.20.(12分)如图,在三棱锥中,,,记二面角的平面角为(1)若,,求三棱锥的体积;(2)若M为BC的中点,求直线AD与EM所成角的取值范围21.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和22.(10分)已知直线l过定点(1)若直线l与直线垂直,求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求直线l的方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.2、C【解析】根据充要条件的定义进行判断【详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C3、D【解析】用基本量表示可得基本量的关系式,从而可得,故可得正确的选项.【详解】若,则,而,此时,这与题设不合,故,故,故,而,故,此时不确定,故选:D.4、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B5、D【解析】由已知设抛物线方程为,由题意可得,求出,从而可得抛物线的方程【详解】因为抛物线的准线方程为,所以设抛物线方程为,则,得,所以抛物线方程为,故选:D,6、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.7、A【解析】利用函数的单调性可得正确的选项.【详解】令,因为均为,故为上的增函数,由可得,故,故选:A.8、B【解析】根据题意列出方程,利用等比数列的求和公式计算n轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n轮传染,则每轮新增感染人数为,经过n轮传染,总共感染人数为:即,解得,所以感染人数由1个初始感染者增加到1000人大约需要24天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程9、B【解析】由,得点为三角形的重心,可得,即可求解.【详解】如图:设双曲线的焦距为,与轴交于点,由题可知,则,由,得点为三角形的重心,可得,即,,即,解得.故选:B【点睛】本题主要考查了双曲线的简单几何性质,三角形的重心的向量表示,属于中档题.10、A【解析】由题意推出平面,即平面,,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积【详解】∵,分别为棱,的中点,∴,∵三棱锥为正棱锥,作平面,所以是底面正三角的中心,连接并延长交与点,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因为S−ABC是正三棱锥。所以,以,,为从同一定点出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的体对角线就是球的直径,,所以.故选:A.11、B【解析】根据,利用等比数列的通项公式求解.【详解】因为,所以,则,解得,所以.故选:B12、C【解析】每天所走的里程构成公比为的等比数列,设第一天走了里,利用等比数列基本量代换,直接求解.【详解】由题意可知:每天所走的里程构成公比为的等比数列.第一天走了里,第4天走了.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用焦点坐标为求解即可【详解】因为,所以,所以焦点的坐标为,故答案:14、4【解析】根据椭圆焦点在轴上方程的特征进行求解即可.【详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:415、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:16、##【解析】作出可行域,进而根据z的几何意义求得答案.【详解】如图,作出可行域,由z的几何意义可知当过点B时取得最小值.联立,则最小值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)将A、B点坐标代入,计算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分组求和法,结合等比数列的求和公式,即可得答案.【小问1详解】由已知,可得,所以,解得,

.【小问2详解】由(1)得,又,所以,故

.18、(1);(2)证明见解析【解析】(1)由可求出,结合离心率可知,进而可求出,即可求出标准方程.(2)由题意知,,则由直线的点斜式方程可得直线的解析式为,与椭圆进行联立,设,,结合韦达定理可得,从而由斜率的计算公式对进行整理化简从而可证明.【详解】(1)解:因为,所以.又因为离心率,所以,则,所以椭圆的标准方程是(2)证明:由题意知,,,则直线的解析式为,代入椭圆方程,得设,,则.又因为,,所以【点睛】关键点睛:本题第二问的关键是联立直线和椭圆的方程后,结合韦达定理,用表示交点横坐标的和与积,从而代入进行整理化简.19、(1)(2)【解析】(1)选①,利用化已知等式为,得是等差数列,公差,求出其通项公式后,再由求得通项公式,注意;选②,由可变形已知条件得是等差数列,从而求得通项公式;选③,已知式两边同除以,得出,以下同选①;(2)由错位相减法求和【小问1详解】选①,由得,,所以,即,所以是等差数列,公差,又,,,所以,,时,也适合所以;选②,由得,所以等差数列,公差为,又,所以;选③,由得,以下同选①,【小问2详解】由(1),,,两式相减得,所以20、(1)(2)【解析】(1)作出辅助线,找到二面角的平面角,利用余弦定理求出,求出底面积和高,进而求出三棱锥的体积;(2)利用空间基底表达出,结合第一问结论求出,从而求出答案.【小问1详解】取AC的中点F,连接FD,FE,由BC=2,则,故DF⊥AC,EF⊥AC,故∠DFE即为二面角的平面角,即,连接DE,作DH⊥FE,因为,所以平面DEF,因为DH平面DEF,所以AC⊥DH,因为,所以DH⊥平面ABC,因为,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),则,因为,,所以△DEF为等边三角形,则,故三棱锥的体积;【小问2详解】设,则,,由(1)知:,,取为空间中的一组基底,则,由第一问可知:,则其中,且,,故,由第一问可知,又是的中点,所以,所以,因为三棱锥中,所以,所以,故直线AD与EM所成角范围为.【点睛】针对于立体几何中角度范围的题目,可以建立空间直角坐标系来进行求解,若不容易建立坐标系时,也可以通过基底表达出各个向量,进而求出答案.21、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论