版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海玉树州2025届高三数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.2.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.3.已知函数满足,且,则不等式的解集为()A. B. C. D.4.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.5.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9 B.7 C. D.6.执行如下的程序框图,则输出的是()A. B.C. D.7.若,则下列不等式不能成立的是()A. B. C. D.8.定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是()A. B. C. D.9.已知a,b∈R,,则()A.b=3a B.b=6a C.b=9a D.b=12a10.()A. B. C. D.11.执行如图所示的程序框图若输入,则输出的的值为()A. B. C. D.12.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域是.14.已知,则______,______.15.根据如图所示的伪代码,若输入的的值为2,则输出的的值为____________.16.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且满足,证明:.18.(12分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.19.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.20.(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.21.(12分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.22.(10分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.2、D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.3、B【解析】
构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.4、D【解析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【点睛】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.5、C【解析】
根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.6、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.7、B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.8、B【解析】
结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.【点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.9、C【解析】
两复数相等,实部与虚部对应相等.【详解】由,得,即a,b=1.∴b=9a.故选:C.【点睛】本题考查复数的概念,属于基础题.10、D【解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.11、C【解析】
由程序语言依次计算,直到时输出即可【详解】程序的运行过程为当n=2时,时,,此时输出.故选:C【点睛】本题考查由程序框图计算输出结果,属于基础题12、A【解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】解:因为,故定义域为14、【解析】
利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,,,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大.15、【解析】
满足条件执行,否则执行.【详解】本题实质是求分段函数在处的函数值,当时,.故答案为:1【点睛】本题考查条件语句的应用,此类题要做到读懂算法语句,本题是一道容易题.16、36【解析】
先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】
将化简可得,由柯西不等式可得证明.【详解】解:因为,,所以,又,所以,当且仅当时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.18、(1)证明见解析;(2).【解析】
(1)由平面几何知识可得出四边形是平行四边形,可得面,再由面面平行的判定可证得面面平行;(2)由(1)可知,两两垂直,故建立空间直角坐标系,可求得面PAB的法向量,再运用线面角的向量求法,可求得直线与平面所成角的余弦值.【详解】(1),,又,,,而、分别是、的中点,,故面,又且,故四边形是平行四边形,面,又,是面内的两条相交直线,故面面.(2)由(1)可知,两两垂直,故建系如图所示,则,,,,设是平面PAB的法向量,,令,则,,直线NE与平面所成角的余弦值为.【点睛】本题考查空间的面面平行的判定,以及线面角的空间向量的求解方法,属于中档题.19、(1);(2).【解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。20、(1)(2)证明见解析【解析】
(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【详解】(1)∵,∴,即当时,不等式化为,∴当时,不等式化为,此时无解当时,不等式化为,∴综上,原不等式的解集为(2)要证,恒成立即证,恒成立∵的最小值为-2,∴只需证,即证又∴成立,∴原题得证【点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.21、(1)证明见解析;(2)【解析】
(1)由已知可证,即可证明结论;(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.【详解】方法一:(1)依题意,且∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且为的中点,∴,∵平面且,∴平面,以为原点,分别以为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,∴设平面的法向量为,则,∴,取,则.设平面的法向量为,则,∴,取,则.∴,设二面角的平面角为,则,∴二面角的正弦值为.方法二:(1)证明:连接交于点,因为四边形为平行四边形,所以为中点,又因为四边形为菱形,所以为中点,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【点睛】本题主要考查线面平行的证明,考查空间向量法求面面角,意在考查直观想象、逻辑推理与数学运算的数学核心素养,属于中档题.22、(1)证明见解析.(2)【解析】
(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碳达峰和碳中和背景下的新兴产业-碳达峰、碳中和专题
- 【教案】部编语文三上13 胡萝卜先生的长胡子【国家级】一
- 医疗平台课件
- 大学生新生培训计划
- 员工培训礼仪方案
- 小学四年级数学几百几十数乘以一位数质量自测题带答案
- 处方管理办法实施细则
- 福建省南平市2020-2021学年高二下学期期末质量检测化学试题
- 社区发展方案策划与实施社会工作专业教学案例宝典
- 医疗服务营销
- 铸牢中华民族共同体意识学习PPT
- 酒店工程管理的意义
- 做一个有温度护士课件
- 全屋定制家具订单管理流程图课件
- 眼科器械的机械清洗课件
- 北师大版八年级上册一次函数教材分析课件
- 汽车维修质量管理培训教材课件
- 实验室生物安全组织框架
- 超星尔雅学习通《海上丝绸之路》章节测试附答案
- 2022-2023学年苏教版(2019)必修二 2.1 DNA是主要的遗传物质 课件(36张)
- 腹腔镜下肾上腺嗜铬细胞瘤-切除术课件
评论
0/150
提交评论