




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄南市重点中学2025届数学高三上期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若为过椭圆中心的弦,为椭圆的焦点,则△面积的最大值为()A.20 B.30 C.50 D.602.若,,,则下列结论正确的是()A. B. C. D.3.下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最高B.天津的往返机票平均价格变化最大C.上海和广州的往返机票平均价格基本相当D.相比于上一年同期,其中四个城市的往返机票平均价格在增加4.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则().A. B. C. D.5.“”是“函数的图象关于直线对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若实数满足不等式组则的最小值等于()A. B. C. D.7.已知函数的一条切线为,则的最小值为()A. B. C. D.8.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A. B. C. D.9.设是虚数单位,复数()A. B. C. D.10.设集合,集合,则=()A. B. C. D.R11.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.512.如图,设为内一点,且,则与的面积之比为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,满足,,,则的取值范围为_________.14.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________.15.如图,已知,,为的中点,为以为直径的圆上一动点,则的最小值是_____.16.在中,角的平分线交于,,,则面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.18.(12分)在直角坐标平面中,已知的顶点,,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.19.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.20.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.21.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.22.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D.【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.2、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.3、D【解析】
根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.4、B【解析】
根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.5、A【解析】
先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件.故选:A【点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.6、A【解析】
首先画出可行域,利用目标函数的几何意义求的最小值.【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.7、A【解析】
求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.8、C【解析】
利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.9、D【解析】
利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.10、D【解析】试题分析:由题,,,选D考点:集合的运算11、A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.12、A【解析】
作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,,,且,所以又,所以,,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【详解】设,,,,如图所示:因为,,,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.14、,【解析】
根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,,,,,从题图中可以看出,从时是函数的半个周期,则,.又,,得,取,所以,.故答案为:,.【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.15、【解析】
建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,,,设点,所以,由平面向量数量积的坐标表示可得,,其中,因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.16、15【解析】
由角平分线定理得,利用余弦定理和三角形面积公式,借助三角恒等变化求出面积的最大值.【详解】画出图形:因为,,由角平分线定理得,设,则由余弦定理得:即当且仅当,即时取等号所以面积的最大值为15故答案为:15【点睛】此题考查解三角形面积的最值问题,通过三角恒等变形后利用均值不等式处理,属于一般性题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据坐标和为等边三角形可得,进而得到椭圆方程;(2)①当直线斜率不存在时,易求坐标,从而得到所求面积;②当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1),,为等边三角形,,椭圆的标准方程为.(2)设四边形的面积为.①当直线的斜率不存在时,可得,,.②当直线的斜率存在时,设直线的方程为,设,,联立得:,,,.,,,,面积.令,则,,令,则,,在定义域内单调递减,.综上所述:四边形面积的取值范围是.【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.18、(1)();(2)证明见解析.【解析】
(1)设点,分别用表示、表示和余弦定理表示,将表示为、的方程,再化简即可;(2)设直线方程代入的轨迹方程,得,设点,,,表示出直线,取,得,即可证明直线过轴上的定点.【详解】(1)设,由已知,∴,∴(),化简得点的轨迹的方程为:();(2)由(1)知,过点的直线的斜率为0时与无交点,不合题意故可设直线的方程为:(),代入的方程得:.设,,则,,.∴直线:.令,得.直线过轴上的定点.【点睛】本题主要考查轨迹方程的求法、余弦定理的应用和利用直线和圆锥曲线的位置关系求定点问题,考查学生的计算能力,属于中档题.19、(1)见解析;(2).【解析】试题分析:(1)根据平面有,利用勾股定理可证明,故平面,再由面面垂直的判定定理可证得结论;(2)在点建立空间直角坐标系,利用二面角的余弦值为建立方程求得,在利用法向量求得和平面所成角的正弦值.试题解析:(Ⅰ)平面平面因为,所以,所以,所以,又,所以平面.因为平面,所以平面平面.(Ⅱ)如图,以点为原点,分别为轴、轴、轴正方向,建立空间直角坐标系,则.设,则取,则为面法向量.设为面的法向量,则,即,取,则依题意,则.于是.设直线与平面所成角为,则即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年高中信息技术选修2(浙教版2019)-网络基础-教学设计-1.2-网络的分类
- 第3课《雨的四季》教学设计-2024-2025学年统编版语文七年级上册
- 石墨钢辊环行业市场发展及发展趋势与投资战略研究报告
- 五金手册换算
- 行进间运球 教学设计-2023-2024学年高二上学期体育与健康人教版必修第一册
- 二零二五年度员工自愿离职经济补偿与竞业禁止协议
- 2025年度房地产项目土地收购居间服务合同
- 二零二五年度签署的自愿离婚及财产分割与子女监护协议
- 贝的故事(教学设计)-2023-2024学年语文二年级下册统编版
- 游戏厅装修合同标准范本
- 郑州2025年河南郑州市公安机关招聘辅警1200人笔试历年参考题库附带答案详解
- 微电网运行与控制策略-深度研究
- 2025南网科研院系统内招聘13人易考易错模拟试题(共500题)试卷后附参考答案
- 关于合同知识的全面解读
- 物业管理车辆出入管理制度
- 《从零到卓越- 创新与创业导论》教案
- IEC 62368-1标准解读-中文
- 15J403-1-楼梯栏杆栏板(一)
- QC课题提高金刚砂地面施工一次合格率
- 2024年江苏农牧科技职业学院单招职业适应性测试题库附答案
- GB/T 14800-2010土工合成材料静态顶破试验(CBR法)
评论
0/150
提交评论