英文关键材料:电动汽车电池(英)2024_第1页
英文关键材料:电动汽车电池(英)2024_第2页
英文关键材料:电动汽车电池(英)2024_第3页
英文关键材料:电动汽车电池(英)2024_第4页
英文关键材料:电动汽车电池(英)2024_第5页
已阅读5页,还剩144页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CRITICALMATERIALS

BATTERIESFOR

ELECTRICVEHICLES

IIRENA

InternationalRenewableEnergyAgency

©IRENA2024

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

ISBN978-92-9260-626-8

Citation:IRENA(2024),Criticalmaterials:Batteriesforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi.

AboutIRENA

TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.

Acknowledgements

ThisreportwasauthoredbyIsaacElizondoGarcia,CarlosRuizandLuisJaneiro(IRENA)andMartinaLyons(ex-IRENA),underthedirectionofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).

ValuableinputwasprovidedbyIRENAcolleaguesDeeptiSiddhanti,DoraLopez,JinleiFengandZhaoyuLewisWuandYongChen.

Thisreportbenefittedfromtheinputandcommentsofexperts,BryanBille(BenchmarkMineralsIntelligence),ClaudiaBrunori(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),DanaCartwright(InternationalCouncilonMiningandMetals),DanielWeaver(DepartmentforEnergySecurityandNetZero,UK),DjiboSeydou(MinistryofMines,Niger),DolfGielen(WorldBank),KatherineShapiro(MinistryofEnergyandNaturalResources,Canada),MarcosIerides(Bax&Company),MarosHalama(InoBat),ShoraiKavu(MinistryofEnergyandPowerDevelopment,Zimbabwe),SilviaBobba(JointResearchCentre,EuropeanCommission)andYiheyisEshetu(MinistryofWaterandEnergy,Ethiopia).Thereportwascopy-editedbyFayreMakeigandtechnicalreviewprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.GraphicdesignwasprovidedbyNachoSanz.

Forfurtherinformationortoprovidefeedback:publications@Thisreportisavailableat:/publications

Disclaimer

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

Coverphotos:©SergiiChernov/Sand©Varavin88/S

3

CONTENTS

FIgures,tablesandboxes 4

Abbreviations 6

Executivesummary 7

1.Introduction 15

2.DemandsupplyprospectsforEVbatterymaterials 18

2.1Theroleofelectricvehicles(EVs)intheenergytransition 18

2.2.DemandforEVbatterymaterials 20

2.3SupplyofEVbatterymaterials 30

3.Keyconsiderationsforpolicymakers 34

3.1.Resultsandconclusions 34

3.2.Recommendationsforpolicymakers 39

References 44

Annex1Supplydemandprospectspermaterial 50

Annex1.1.Lithium 50

Annex1.2.Cobalt 54

Annex1.3.Graphite 58

Annex1.4.Nickel 61

Annex1.5.Copper 64

Annex1.6.Phosphorous 67

Annex1.7.Manganese 70

Annex2Keyassumptions 73

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

4

FIGURES

Figure1Criticalmaterialsupplyanddemandin2023and2030 9

Figure2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand

batterychemistry 11

Figure3Volume-weightedaveragepricesplitforlithium-ionbatterypacksandcells,2013-2023

(realUSD2023/kWh) 16

Figure4Breakdownoftotalfinalenergyconsumptionbyenergycarrierunderthe1.5°CScenario,

2020-2050 18

Figure5EstimatedbatterydemandforEVsunderIRENA’s1.5°CScenariobysegment,

2023-2030 19

Figure6Batterysystemcomponentsandinternalcomponentsofabatterycell 20

Figure7Estimatedaveragecriticalmaterialmetalcontentofselectedlithium-ionEV

batterycathodes 21

Figure8GlobalEVbatterycathodechemistrymixesforpassengervehicles,2015-2023 22

Figure9GlobalEVbatteryanodechemistrymix,2015-2023 23

Figure10EstimatedaveragecriticalmaterialcompositionofselectedEVbatterypacks 24

Figure11Evolutionofhistoricalbatterychemistrymarketsharesforpassengervehicles,

2015-2022,andexplorativescenarios,2023-2030 27

Figure12EstimatedglobalshareofmaterialdemandfromEVbatteriesandotherapplications,

2022and2030 29

Figure13Regionallithium-ionbatterymanufacturingcapacityin2023andplanned

capacityfor2030 30

Figure14Materialsupplyin2023andrangeofestimatedsupplyin2030 32

Figure15Totalbatterymaterialexplorationexpenditure,2010-2023(real2023USDmillion) 33

Figure16Criticalmaterialsupplyanddemandin2023and2030 35

FigureA1.1LithiumdemandfromEVbatteriesandotherapplications,2022and2030 51

FigureA1.2LithiumdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 51

FigureA1.3Lithiumsupplyanddemandin2023and2030 52

FigureA1.4Lithiumsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 53

FigureA1.5CobaltdemandfromEVbatteriesandotherapplications,2022and2030 55

FigureA1.6CobaltdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 55

FigureA1.7Cobaltsupplyanddemandin2023and2030 56

FigureA1.8Cobaltsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 57

5

Figures,tablesandboxes

FigureA1.9GraphitedemandfromEVbatteriesandotherapplications,2022and2030 59

FigureA1.10GraphitedemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 59

FigureA1.11Graphitesupplyanddemandin2023and2030 60

FigureA1.12NickeldemandfromEVbatteriesandotherapplications,2022and2030 61

FigureA1.13NickeldemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 62

FigureA1.14Nickelsupplyanddemandin2023and2030 63

FigureA1.15RefinedcopperdemandfromEVbatteriesandotherapplications,2022and2030 64

FigureA1.16RefinedcopperdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 65

FigureA1.17Refinedcoppersupplyanddemandin2023and2030 66

FigureA1.18PhosphorousdemandfromEVbatteriesandotherapplications,2022and2030 68

FigureA1.19PhosphorousdemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 68

FigureA1.20Phosphoroussupplyanddemandin2023and2030 69

FigureA1.21ManganesedemandfromEVbatteriesandotherapplications,2022and2030 70

FigureA1.22ManganesedemandfromEVbatteriesby2030basedonIRENA’sbattery

chemistryscenarios 71

FigureA1.23Manganesesupplyanddemandin2023and2030 72

TABLES

Table1OverviewofglobalresourcesforselectedEVbatterycriticalmaterials 15

Table2OverviewofcriticalmaterialdemandfromEVbatteriesbyscenario,2030 34

Table3Overviewofoverallsupply-demandbalanceestimations 36

Table4Overviewofkeymaterials 37

TableA2.1GlobalaverageEVbatterysizepervehiclesegment,2022and2030 73

TableA2.2EVbatterychemistrymixforcars/SUVs/vansbyscenario,2030 73

TableA2.3EVbatterychemistrymixformotorcyclesbyscenario,2030 74

TableA2.4EVbatterychemistrymixforbusesbyscenario,2030 74

TableA2.5EVbatterychemistrymixfortrucksbyscenario,2030 74

TableA2.6MaterialcompositionassumedperEVbatterytype,2022 75

TableA2.7Materialcompositionassumedpersodium-ionbatterytype 75

CRITICALMATERIALS:batteriesForeleCtriCVeHiCles

6

BOXES

Box1Sodium-ionbatteries 25

Box2Historicinvestmentsinexploration 33

ABBREVIATIONS

BEVbatteryelectricvehicle

ESGenvironmental,socialandgovernanceEVelectricvehicle

GWhgigawatthour

IRENAInternationalRenewableEnergyAgency

kgkilogram

kWhkilowatthour

LCElithiumcarbonateequivalentLFPlithiumironphosphate

LMFPlithiummanganeseironphosphate

LMOlithiummanganeseoxide

Mtmilliontonnes

NCAnickelcobaltaluminiumoxide

NMCnickelmanganesecobaltoxide

NMCAnickelmanganesecobaltaluminiumoxide

PHEVplug-inhybridelectricvehicle

PPApurifiedphosphoricacid

R&Dresearchanddevelopment

SUVsportsutilityvehicle

Whwatthour

EXECUTIVESUMMARY

Advancingtheenergytransitionwillrequireelectricvehicles(EVs)todominatepassengervehiclesalesby2030.In2023,theglobalstockofpassengerEVsstoodatabout44million.AchievingtheInternationalRenewableEnergyAgency’s(IRENA’s)1.5°CScenariorequiressignificantgrowthoftheglobalstock,to359million,by2030.Thiselectrificationimperativeextendstoallroadtransportsectors,includingthosepreviouslydeemedunsuitableforelectrification,such

aslong-haulroadfreight.

WhiletheoutlookforEVbatteryproductioncapacityispositive,ensuringanadequate,reliableandaffordablesupplyofthenecessaryrawmaterialsisessential.InlinewithIRENA’s1.5°CScenario,theelectrificationofroadtransportwouldrequireEVbatteries’annualproductiontogrowfive-foldbetween2023and2030.Eventhoughthecurrentplannedbatteryproductioncapacityfor2030(7300gigawatthours[GWh]/year)exceedstheanticipateddemandforEVbatteries(4300GWh/year),concertedeffortsarestillneededtosecurethenecessaryrawmaterialsforthesebatteries.

IncreasingdemandforEVswoulddriveupdemandforthematerialsusedinEVbatteries,suchasgraphite,lithium,cobalt,copper,phosphorous,manganeseandnickel.UnderIRENA’s1.5°CScenario,thedemandforlithiumfromEVbatteriescouldroughlyquadruplefrom2023to2030.Similarly,thedemandforcobalt,graphiteandnickelcouldmorethantriple.However,innovationsenablingthesubstitutionofthesematerialsarealreadyreducingdemand;cobaltandnickelwerenolongerusedinnearlyhalfofthepassengerEVssoldin2023.

Whileresourceavailabilityisnotaconstraintforthelong-termdecarbonisationofroadtransport,effortsareneededtoquicklyandeffectivelyscaleupproductiontomeetgrowingdemandintheshorttomediumterm.AshighlightedinpreviousIRENApublications,long-termavailabilityisamatterofexpandingproductionvolumeandensuringdiversityofsupply(Gielen,2021;IRENA,2023a).Forinstance,theannualdemandforlithiumisestimatedtobe2.5-3.1milliontonnesperyear(Mt/year)by2030,withreservesandresourcesstandingat150Mtand560Mt,respectively,indicatingamplesupply(USGS,2024).

7

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

8

Effectivelynavigatinguncertaintiesintheshorttomediumtermrequiresregularmonitoringandassessmentofmarketdynamicsandtechnologicaladvancementsaswellasmodellingvariousscenarios.Onthedemandside,uncertaintiesprimarilyresultfrompoliciessupportingEVdeploymentandtheirimpactontheprojectedvolumeofEVsales;disruptiveinnovation;andtheevolvingmarketshareofdifferentanodeandcathodechemistries,eachcharacterisedbydistinctmaterialcompositions.Onthesupplyside,uncertaintiesstemfromfactorssuchasfluctuatingmarketprices,regulatorychangesandpotentialdisruptionsinthevaluechainduetofactorssuchasnaturaldisasters,geopoliticaltensionsortradedisputes.

IRENAhasdevelopedasupply-demandanalysistounderstandandexplorepotentialbottlenecksby2030,assumingalevelofEVdeploymentalignedwiththe1.5°CScenario.

Withinthiscontext,threebatterychemistryscenariosareexamined.Thefirstscenario,consideredaTechnologyStagnationscenario,assumeslimitedinnovationandacontinuedhighshareofnickel-richchemistries.Thesecondscenario,consideredacontinuationofCurrentTrends,exploresanincreasingdominanceoflithiumironphosphate(LFP)andlithiummanganeseironphosphate(LMFP)batteries.1Thethirdscenario,regardedasanIncreasedInnovationscenario,assumestheprominenceofLFPandLMFPalongsideasignificantincreaseinemergingsodium-iontechnology.Togaugethelikelihoodofasupply-demandgapundereachscenario,arangeofsupplyprojectionsfromotherorganisationsisconsidered.

EVbatteriesarenotdrivingthedemandforallcriticalmaterialsinEVs.Otherindustriesandapplicationsinfluencingthesematerials’availabilityandpricingshouldnotbeoverlooked.

ThedemandforEVbatteriesisamajordriverofdemandforlithium,and–toalesserextent-cobalt,graphiteandnickel.However,copper,withanapproximately4%demandsharefromEVbatteriesby2030,isprimarilydrivenbyconstructionandpower-relatedinfrastructure.Similarly,thedemandsharesforphosphorusandmanganesefromEVbatteriesareestimatedtobeabout3%andonlyabout2%,respectively,by2030.

Withsustainableexpansionofmaterialsupplychains,complementedbycontinuedinnovationinbatterychemistries,countriescanmeetthegrowingdemandforEVbatterymaterials.ThisispossibleevenunderaveryfastadoptionofEVs,inlinewitha1.5°Cdecarbonisationpathway.

Acriticalfactorwillbethescale-upofmaterialsupplyinlinewithcurrentlyavailableforecasts.Beyondthat,fasteradoptionofinnovativebatterieswithlowercriticalmaterialrequirements(e.g.LFP,LMFPandsodium-ion)couldfurthermitigatepotentialshortagesofsomematerials,evenifminingdoesnotscaleupasrapidlyasexpected.Abroadrangeofoutcomesispossibledependingontheevolutionofmaterialsupplycapacityandtheeffectsoftechnologyinnovation.Forinstance,potentiallithiumsurplusesareestimatedat0.60Mt/year,orabout25%oftheestimateddemandin2030,whileshortagescouldreachupto1.3Mt/year,representingabout40%oftheestimateddemandin2030(Figure1).

1LFPreferstolithiumironphosphatebatteries,andLMFPreferstolithiummanganeseironphosphatebatteries.

9

exeCutiVesummary

FIGURE1Criticalmaterialsupplyanddemandin2023and2030

Graphite

3.53.02.52.01.51.00.50.0

8

6

4

2

Mt/year

0

42

36

30

24

18

12

6

0

28

24

20

16

12

8

4

0

Lithium

Copper

Manganese

Nickel

Phosphorous

0.5

0.4

0.3

0.2

0.1

0.0

6

5

4

3

2

1

0

30

25

20

15

10

5

0

Cobalt

Supplyin2023

Lowdemandin2030 Lowsupplyin2030Syntheticgraphite

Highdemandin2030Highsupplyin2030

Sources:Lithium–supplyin2023basedonUSGS(2024);supplyin2030basedonAlbemarle(2023),BNEF(2024a),ETC(2023),FitchSolutions(2022),JimenezandSaez(2022)andS&PGlobal(2023).Cobalt–supplyin2023basedonUSGS(2024);supplyanddemandin2030basedonBNEF(2024a),CobaltBlueHoldings(2022),Darbar(2022),ETC(2023),Fu(2020),PattersonandRankumar(2023)andS&PGlobal(2023).Graphite–supplyin2023basedonUSGS(2024);supply

in2030basedonBlackRockMining(2023),ETC(2023)andWSJ(2023).Nickel–supplyin2023basedonUSGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Copper–supplyin2023basedon

USGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Phosphorous–supplyin2023basedonBrownlieetal.(2022)andUSGS(2024);supplyin2030basedonIRENAanalysis.Manganese–supplyin2023basedonUSGS(2024);supplyin2030basedonJupiterMines(2023)andMcKinsey(2022).

Notes:Supplyestimatesincludeannounced,plannedandpotentialsupply.Lithiumisexpressedintermsoflithiumcarbonateequivalent(LCE).Copperreferstorefinedcopper.Thevaluesforphosphorousrefertoelementalphosphorous.Mt=milliontonnes.

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

10

Bothbatterychemistryandbatterysizehaveasignificantimpactonthemarketdynamicsofcriticalmaterials.Figure2featuresthreegraphsforeachcriticalmaterial.Eachgraphrepresentsadifferentbatterychemistryscenario.Thegraphsplotthepotentialmarketbalanceonthey-axisagainstvariousbatterysizesonthex-axis.Theyshowcasehoweachfactorcontributestosupply-demandrelationshipsforcriticalmaterials.TheaveragesizeofEVbatteries,estimatedtoplateauatabout57kilowatthours(kWh),iscrucialasitdirectlycorrelateswiththedemandforbatterymaterials(BNEF,2024a;Krishna,2023).ThesensitivityanalysisdepictedinFigure2considersarangeofestimatedsupplyandusecolourcoding:theyellowareaindicatespotentialmarketshortfalls,whilethegreenareahighlightspotentialsurpluses.Orangedotsrepresentthemarketbalanceunderconditionsoflowsupply,whilegreendotsdenotethebalanceunderhigh-supplyscenarios.

LITHIUM

NICKEL

COBALT

COPPER

MANGANESE

GRAPHITE

PHOSPHOROUS

11

exeCutiVesummary

FIGURE2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand

batterychemistry

TechnologyStagnationscenarioCurrentTrendsscenarioIncreasedInnovationscenario

1.501.000.500.00-0.50-1.00-1.50

Lithium(LCE)

0.250.200.150.100.050.00-0.05-0.10-0.15-0.20-0.25

Mt

3.00

1.50

0.00

-1.50

-3.00

Cobalt

Graphite

2.001.501.000.500.00-0.50-1.00-1.50-2.00

Nickel

505560657050556065705055606570

kWh

oDeficitoSurplusoLowsupplyoHighsupply

Notes:kWh=kilowatthour;LCE=lithiumcarbonateequivalent;Mt=milliontonnes.

CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES

12

Basedontheanalysisoffactorsaffectingbothsupplyanddemandby2030,thefollowingperspectivesarepresentedforeachmaterial:

•Thedemandforlithiumremainslargelyunaffectedbythechoiceofbatterychemistry,sincemostEVbatterytechnologiesdependonit.Sodium-ionbatteries,whichdonotrelyonlithium,mayentertheEVbatterymarketlaterinthedecade,buttheirimpactonreducinglithiumdemandwilllikelybemoresignificantafter2030.Long-termavailabilityoflithiumisnotaconstraint.Instead,addressingpotentiallithiumdeficitswillsignificantlyrelyonexpandingthesupplychainorreducingdemandthroughimprovementoftheenergydensity2ofexistinglithium-ionbatteries.

•CobaltcanbesubstitutedwiththeintegrationoftechnologiessuchasLFPandLMFP,rapidlyreducingcobalt’scriticalityforroadtransportelectrification.However,cobaltsupplyshortfallscouldbepossibleinscenarioswherecobalt-containingbatteries,suchasnickelmanganese

cobaltoxide(NMC)andnickelcobaltaluminiumoxide(NMCA),remainwidespread.

•Basedoncurrentsupplyprojections,naturalgraphitewilllikelybeinsufficienttomeetallexpectedgraphitedemandby2030.Syntheticgraphite,althoughmoreenergyintensive,couldbescaleduptobridgethesupplygap.Beyondthat,atransitiontowardsanodeswithincreasedsiliconcontentisalreadyoccurringandcouldfurtherreducepressureonthematerial.

•NickeldemandhasalreadybeencontainedbytheriseofLFPandLMFPbatteries.Afurthertransitionfromnickel-richbatteriestootherchemistrieswouldmakesupplyshortagesunlikely,unlessthesupplymaterialisesatthelowerendofthecurrentsupplyprojectionsrange.

•Thedemandforcopper,phosphorousandmanganesefromtheEVmarketisexpectedtorepresentonlyasmallshareofglobaldemandforthesematerials.Therefore,itsimpactonshapingsupplyanddemanddynamicswillberelativelyminorcomparedwithdemandfromlargersectors.However,addressingissuessurroundingbattery-gradepurifiedphosphoricacidandhigh-puritymanganesesulphateemergesasthemostpressingconcern,requiringconcertedactionstorapidlyexpandtheirsupplychains.

Innovationhasalreadydecreasedthedemandforcriticalmaterialssignificantly.Forinstance,LFPbatteries,whichhadasingle-digitmarketsharein2015,capturedanestimated44%ofthepassengervehiclemarketin2023.Projecting2023’scobaltandnickeldemandfiveyearsprior–consideringthemixofbatterychemistriesatthetime–wouldhaveledtosignificantoverestimationsofdemand.Forinstance,cobaltandnickeldemandfromEVbatterieswouldhavebeenabout50%higher.

2Inthisreport,energydensityreferstogravimetricenergydensity.

13

exeCutiVesummary

AdvancesinEVbatterytechnologyhavealsoimprovedgravimetricenergydensitysignificantly,a30%increase,onaverage,forbatterycellsand60%forbatterypacksoverthepastdecade(BNEF,2024).Theseadvancesnotonlyboostenergyperformanceanddrivedowncosts,theyalsoplayasignificantroleinreducingmaterialdemand.Furtherimprovementsarestillpossible.Forinstance,ContemporaryAmperexTechnologyCo.,Limited(CATL)andNorthvolthavedevelopedasodium-ionbatterywithanenergydensityof160watthourperkilogramme(Wh/kg);theyareplanningforthenextgenerationtoexceed200Wh/kg(CATL,2023;Northvolt,2023).Moreover,CATLhasunveiledacondensedbatterycell,which,throughchemicalanddesigninnovation,isabletoachieveagravimetricenergydensityof500Wh/kg(CATL,2023).Thismarkedlysurpassesthetypicalenergydensityof250-300Wh/kginnickel-richbatteries(Ringbeck,2024).Designpresentsanotheravenueforinnovation.Forexample,BYDhascommercialisedthecell-to-packtechnologyandisnowadvancingtocell-to-bodytechnology.Thislatestapproachfurtherincreasesenergydensitybyintegratingbatterycellsdirectlyintoacar’sbody,therebycompletelyeliminatingtheneedforatraditionalbatterypack(BYD,2023;WEF,2023).

Innovationemergesasthecentralcomponentinaddressingpotentialbottlenecks,offeringpathwaystoreducedemandandbolstersupply.Amonginnovations,advancementsinEVbatterycathodes,notablyLFPandLMFP,alongsideemergingtechnologies,suchassodium-ion,couldalleviate,ifnotentirelyeliminate,thedemandforsomematerials.ContinuousimprovementinenergydensitythroughinnovativedesignandengineeringcouldpositionLFPandLMFPaschallengerstonickel-richbatteries’dominanceinhigh-endEVmarketsegments.Overcomingsodium-iontechnology’schallengescouldleadtostructuraladvancements,bypartiallyorcompletelyeliminatingtheneedforsomematerials,forexample,lithium,cobaltandgraphite.Moreover,innovationinminingandprocessingcouldalleviatepressuresonthesupplyside,enablingtimely,cost-effectiveandsustainableproductionofmaterials.

ThisreportdetailsseveralactionsforgovernmentsandstakeholdersacrosstheEVbatterysupplychaintoensureanadequate,reliable,sustainableandaffordablesupplyofcriticalmaterialsforEVbatteriesby2030.

Toaddresspotentialmaterialbottlenecks,governmentscanplayakeyroleinacceleratingandsupportinginnovationaimedatreducingoreliminatingtheuseofcriticalmaterialsinEVbatteries.Examplesofpossibleinnovationsincludeadvancementsincathodeandanodetechnologies,andimprovementsinbatterydesignandengineeringtoboostenergydensityandreducematerialuse.GiventherapidevolutionofEVbatterytechnologies,governments,miningandprocessingcompanies,andbatterymanufacturerscanmonitormarketscloselyandfrequentlyandincreaseindustryengagementtostayabreastofthelatesttrendsandbreakthroughsininnovation.GovernmentsmayalsofacilitateareductionofcriticalmaterialdemandbysupportingtheaccelerateddeploymentofEVcharginginfrastructure,supportingtheadoptionofEVswithsma

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论