版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CRITICALMATERIALS
BATTERIESFOR
ELECTRICVEHICLES
IIRENA
InternationalRenewableEnergyAgency
©IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN978-92-9260-626-8
Citation:IRENA(2024),Criticalmaterials:Batteriesforelectricvehicles,InternationalRenewableEnergyAgency,AbuDhabi.
AboutIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfuture,andservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergyinthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
Acknowledgements
ThisreportwasauthoredbyIsaacElizondoGarcia,CarlosRuizandLuisJaneiro(IRENA)andMartinaLyons(ex-IRENA),underthedirectionofFranciscoBoshellandRolandRoesch(Director,IRENAInnovationandTechnologyCentre).
ValuableinputwasprovidedbyIRENAcolleaguesDeeptiSiddhanti,DoraLopez,JinleiFengandZhaoyuLewisWuandYongChen.
Thisreportbenefittedfromtheinputandcommentsofexperts,BryanBille(BenchmarkMineralsIntelligence),ClaudiaBrunori(ItalianNationalAgencyforNewTechnologies,EnergyandSustainableEconomicDevelopment),DanaCartwright(InternationalCouncilonMiningandMetals),DanielWeaver(DepartmentforEnergySecurityandNetZero,UK),DjiboSeydou(MinistryofMines,Niger),DolfGielen(WorldBank),KatherineShapiro(MinistryofEnergyandNaturalResources,Canada),MarcosIerides(Bax&Company),MarosHalama(InoBat),ShoraiKavu(MinistryofEnergyandPowerDevelopment,Zimbabwe),SilviaBobba(JointResearchCentre,EuropeanCommission)andYiheyisEshetu(MinistryofWaterandEnergy,Ethiopia).Thereportwascopy-editedbyFayreMakeigandtechnicalreviewprovidedbyPaulKomor.EditorialsupportwasprovidedbyFrancisFieldandStephanieClarke.GraphicdesignwasprovidedbyNachoSanz.
Forfurtherinformationortoprovidefeedback:publications@Thisreportisavailableat:/publications
Disclaimer
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Coverphotos:©SergiiChernov/Sand©Varavin88/S
3
CONTENTS
FIgures,tablesandboxes 4
Abbreviations 6
Executivesummary 7
1.Introduction 15
2.DemandsupplyprospectsforEVbatterymaterials 18
2.1Theroleofelectricvehicles(EVs)intheenergytransition 18
2.2.DemandforEVbatterymaterials 20
2.3SupplyofEVbatterymaterials 30
3.Keyconsiderationsforpolicymakers 34
3.1.Resultsandconclusions 34
3.2.Recommendationsforpolicymakers 39
References 44
Annex1Supplydemandprospectspermaterial 50
Annex1.1.Lithium 50
Annex1.2.Cobalt 54
Annex1.3.Graphite 58
Annex1.4.Nickel 61
Annex1.5.Copper 64
Annex1.6.Phosphorous 67
Annex1.7.Manganese 70
Annex2Keyassumptions 73
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
4
FIGURES
Figure1Criticalmaterialsupplyanddemandin2023and2030 9
Figure2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand
batterychemistry 11
Figure3Volume-weightedaveragepricesplitforlithium-ionbatterypacksandcells,2013-2023
(realUSD2023/kWh) 16
Figure4Breakdownoftotalfinalenergyconsumptionbyenergycarrierunderthe1.5°CScenario,
2020-2050 18
Figure5EstimatedbatterydemandforEVsunderIRENA’s1.5°CScenariobysegment,
2023-2030 19
Figure6Batterysystemcomponentsandinternalcomponentsofabatterycell 20
Figure7Estimatedaveragecriticalmaterialmetalcontentofselectedlithium-ionEV
batterycathodes 21
Figure8GlobalEVbatterycathodechemistrymixesforpassengervehicles,2015-2023 22
Figure9GlobalEVbatteryanodechemistrymix,2015-2023 23
Figure10EstimatedaveragecriticalmaterialcompositionofselectedEVbatterypacks 24
Figure11Evolutionofhistoricalbatterychemistrymarketsharesforpassengervehicles,
2015-2022,andexplorativescenarios,2023-2030 27
Figure12EstimatedglobalshareofmaterialdemandfromEVbatteriesandotherapplications,
2022and2030 29
Figure13Regionallithium-ionbatterymanufacturingcapacityin2023andplanned
capacityfor2030 30
Figure14Materialsupplyin2023andrangeofestimatedsupplyin2030 32
Figure15Totalbatterymaterialexplorationexpenditure,2010-2023(real2023USDmillion) 33
Figure16Criticalmaterialsupplyanddemandin2023and2030 35
FigureA1.1LithiumdemandfromEVbatteriesandotherapplications,2022and2030 51
FigureA1.2LithiumdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 51
FigureA1.3Lithiumsupplyanddemandin2023and2030 52
FigureA1.4Lithiumsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 53
FigureA1.5CobaltdemandfromEVbatteriesandotherapplications,2022and2030 55
FigureA1.6CobaltdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 55
FigureA1.7Cobaltsupplyanddemandin2023and2030 56
FigureA1.8Cobaltsupplyanddemandbalancein2030basedonbatterysizesensitivityanalysis 57
5
Figures,tablesandboxes
FigureA1.9GraphitedemandfromEVbatteriesandotherapplications,2022and2030 59
FigureA1.10GraphitedemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 59
FigureA1.11Graphitesupplyanddemandin2023and2030 60
FigureA1.12NickeldemandfromEVbatteriesandotherapplications,2022and2030 61
FigureA1.13NickeldemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 62
FigureA1.14Nickelsupplyanddemandin2023and2030 63
FigureA1.15RefinedcopperdemandfromEVbatteriesandotherapplications,2022and2030 64
FigureA1.16RefinedcopperdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 65
FigureA1.17Refinedcoppersupplyanddemandin2023and2030 66
FigureA1.18PhosphorousdemandfromEVbatteriesandotherapplications,2022and2030 68
FigureA1.19PhosphorousdemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 68
FigureA1.20Phosphoroussupplyanddemandin2023and2030 69
FigureA1.21ManganesedemandfromEVbatteriesandotherapplications,2022and2030 70
FigureA1.22ManganesedemandfromEVbatteriesby2030basedonIRENA’sbattery
chemistryscenarios 71
FigureA1.23Manganesesupplyanddemandin2023and2030 72
TABLES
Table1OverviewofglobalresourcesforselectedEVbatterycriticalmaterials 15
Table2OverviewofcriticalmaterialdemandfromEVbatteriesbyscenario,2030 34
Table3Overviewofoverallsupply-demandbalanceestimations 36
Table4Overviewofkeymaterials 37
TableA2.1GlobalaverageEVbatterysizepervehiclesegment,2022and2030 73
TableA2.2EVbatterychemistrymixforcars/SUVs/vansbyscenario,2030 73
TableA2.3EVbatterychemistrymixformotorcyclesbyscenario,2030 74
TableA2.4EVbatterychemistrymixforbusesbyscenario,2030 74
TableA2.5EVbatterychemistrymixfortrucksbyscenario,2030 74
TableA2.6MaterialcompositionassumedperEVbatterytype,2022 75
TableA2.7Materialcompositionassumedpersodium-ionbatterytype 75
CRITICALMATERIALS:batteriesForeleCtriCVeHiCles
6
BOXES
Box1Sodium-ionbatteries 25
Box2Historicinvestmentsinexploration 33
ABBREVIATIONS
BEVbatteryelectricvehicle
ESGenvironmental,socialandgovernanceEVelectricvehicle
GWhgigawatthour
IRENAInternationalRenewableEnergyAgency
kgkilogram
kWhkilowatthour
LCElithiumcarbonateequivalentLFPlithiumironphosphate
LMFPlithiummanganeseironphosphate
LMOlithiummanganeseoxide
Mtmilliontonnes
NCAnickelcobaltaluminiumoxide
NMCnickelmanganesecobaltoxide
NMCAnickelmanganesecobaltaluminiumoxide
PHEVplug-inhybridelectricvehicle
PPApurifiedphosphoricacid
R&Dresearchanddevelopment
SUVsportsutilityvehicle
Whwatthour
EXECUTIVESUMMARY
Advancingtheenergytransitionwillrequireelectricvehicles(EVs)todominatepassengervehiclesalesby2030.In2023,theglobalstockofpassengerEVsstoodatabout44million.AchievingtheInternationalRenewableEnergyAgency’s(IRENA’s)1.5°CScenariorequiressignificantgrowthoftheglobalstock,to359million,by2030.Thiselectrificationimperativeextendstoallroadtransportsectors,includingthosepreviouslydeemedunsuitableforelectrification,such
aslong-haulroadfreight.
WhiletheoutlookforEVbatteryproductioncapacityispositive,ensuringanadequate,reliableandaffordablesupplyofthenecessaryrawmaterialsisessential.InlinewithIRENA’s1.5°CScenario,theelectrificationofroadtransportwouldrequireEVbatteries’annualproductiontogrowfive-foldbetween2023and2030.Eventhoughthecurrentplannedbatteryproductioncapacityfor2030(7300gigawatthours[GWh]/year)exceedstheanticipateddemandforEVbatteries(4300GWh/year),concertedeffortsarestillneededtosecurethenecessaryrawmaterialsforthesebatteries.
IncreasingdemandforEVswoulddriveupdemandforthematerialsusedinEVbatteries,suchasgraphite,lithium,cobalt,copper,phosphorous,manganeseandnickel.UnderIRENA’s1.5°CScenario,thedemandforlithiumfromEVbatteriescouldroughlyquadruplefrom2023to2030.Similarly,thedemandforcobalt,graphiteandnickelcouldmorethantriple.However,innovationsenablingthesubstitutionofthesematerialsarealreadyreducingdemand;cobaltandnickelwerenolongerusedinnearlyhalfofthepassengerEVssoldin2023.
Whileresourceavailabilityisnotaconstraintforthelong-termdecarbonisationofroadtransport,effortsareneededtoquicklyandeffectivelyscaleupproductiontomeetgrowingdemandintheshorttomediumterm.AshighlightedinpreviousIRENApublications,long-termavailabilityisamatterofexpandingproductionvolumeandensuringdiversityofsupply(Gielen,2021;IRENA,2023a).Forinstance,theannualdemandforlithiumisestimatedtobe2.5-3.1milliontonnesperyear(Mt/year)by2030,withreservesandresourcesstandingat150Mtand560Mt,respectively,indicatingamplesupply(USGS,2024).
7
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
8
Effectivelynavigatinguncertaintiesintheshorttomediumtermrequiresregularmonitoringandassessmentofmarketdynamicsandtechnologicaladvancementsaswellasmodellingvariousscenarios.Onthedemandside,uncertaintiesprimarilyresultfrompoliciessupportingEVdeploymentandtheirimpactontheprojectedvolumeofEVsales;disruptiveinnovation;andtheevolvingmarketshareofdifferentanodeandcathodechemistries,eachcharacterisedbydistinctmaterialcompositions.Onthesupplyside,uncertaintiesstemfromfactorssuchasfluctuatingmarketprices,regulatorychangesandpotentialdisruptionsinthevaluechainduetofactorssuchasnaturaldisasters,geopoliticaltensionsortradedisputes.
IRENAhasdevelopedasupply-demandanalysistounderstandandexplorepotentialbottlenecksby2030,assumingalevelofEVdeploymentalignedwiththe1.5°CScenario.
Withinthiscontext,threebatterychemistryscenariosareexamined.Thefirstscenario,consideredaTechnologyStagnationscenario,assumeslimitedinnovationandacontinuedhighshareofnickel-richchemistries.Thesecondscenario,consideredacontinuationofCurrentTrends,exploresanincreasingdominanceoflithiumironphosphate(LFP)andlithiummanganeseironphosphate(LMFP)batteries.1Thethirdscenario,regardedasanIncreasedInnovationscenario,assumestheprominenceofLFPandLMFPalongsideasignificantincreaseinemergingsodium-iontechnology.Togaugethelikelihoodofasupply-demandgapundereachscenario,arangeofsupplyprojectionsfromotherorganisationsisconsidered.
EVbatteriesarenotdrivingthedemandforallcriticalmaterialsinEVs.Otherindustriesandapplicationsinfluencingthesematerials’availabilityandpricingshouldnotbeoverlooked.
ThedemandforEVbatteriesisamajordriverofdemandforlithium,and–toalesserextent-cobalt,graphiteandnickel.However,copper,withanapproximately4%demandsharefromEVbatteriesby2030,isprimarilydrivenbyconstructionandpower-relatedinfrastructure.Similarly,thedemandsharesforphosphorusandmanganesefromEVbatteriesareestimatedtobeabout3%andonlyabout2%,respectively,by2030.
Withsustainableexpansionofmaterialsupplychains,complementedbycontinuedinnovationinbatterychemistries,countriescanmeetthegrowingdemandforEVbatterymaterials.ThisispossibleevenunderaveryfastadoptionofEVs,inlinewitha1.5°Cdecarbonisationpathway.
Acriticalfactorwillbethescale-upofmaterialsupplyinlinewithcurrentlyavailableforecasts.Beyondthat,fasteradoptionofinnovativebatterieswithlowercriticalmaterialrequirements(e.g.LFP,LMFPandsodium-ion)couldfurthermitigatepotentialshortagesofsomematerials,evenifminingdoesnotscaleupasrapidlyasexpected.Abroadrangeofoutcomesispossibledependingontheevolutionofmaterialsupplycapacityandtheeffectsoftechnologyinnovation.Forinstance,potentiallithiumsurplusesareestimatedat0.60Mt/year,orabout25%oftheestimateddemandin2030,whileshortagescouldreachupto1.3Mt/year,representingabout40%oftheestimateddemandin2030(Figure1).
1LFPreferstolithiumironphosphatebatteries,andLMFPreferstolithiummanganeseironphosphatebatteries.
9
exeCutiVesummary
FIGURE1Criticalmaterialsupplyanddemandin2023and2030
Graphite
3.53.02.52.01.51.00.50.0
8
6
4
2
Mt/year
0
42
36
30
24
18
12
6
0
28
24
20
16
12
8
4
0
Lithium
Copper
Manganese
Nickel
Phosphorous
0.5
0.4
0.3
0.2
0.1
0.0
6
5
4
3
2
1
0
30
25
20
15
10
5
0
Cobalt
Supplyin2023
Lowdemandin2030 Lowsupplyin2030Syntheticgraphite
Highdemandin2030Highsupplyin2030
Sources:Lithium–supplyin2023basedonUSGS(2024);supplyin2030basedonAlbemarle(2023),BNEF(2024a),ETC(2023),FitchSolutions(2022),JimenezandSaez(2022)andS&PGlobal(2023).Cobalt–supplyin2023basedonUSGS(2024);supplyanddemandin2030basedonBNEF(2024a),CobaltBlueHoldings(2022),Darbar(2022),ETC(2023),Fu(2020),PattersonandRankumar(2023)andS&PGlobal(2023).Graphite–supplyin2023basedonUSGS(2024);supply
in2030basedonBlackRockMining(2023),ETC(2023)andWSJ(2023).Nickel–supplyin2023basedonUSGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Copper–supplyin2023basedon
USGS(2024);supplyin2030basedonBNEF(2024b),ETC(2023)andS&PGlobal(2023).Phosphorous–supplyin2023basedonBrownlieetal.(2022)andUSGS(2024);supplyin2030basedonIRENAanalysis.Manganese–supplyin2023basedonUSGS(2024);supplyin2030basedonJupiterMines(2023)andMcKinsey(2022).
Notes:Supplyestimatesincludeannounced,plannedandpotentialsupply.Lithiumisexpressedintermsoflithiumcarbonateequivalent(LCE).Copperreferstorefinedcopper.Thevaluesforphosphorousrefertoelementalphosphorous.Mt=milliontonnes.
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
10
Bothbatterychemistryandbatterysizehaveasignificantimpactonthemarketdynamicsofcriticalmaterials.Figure2featuresthreegraphsforeachcriticalmaterial.Eachgraphrepresentsadifferentbatterychemistryscenario.Thegraphsplotthepotentialmarketbalanceonthey-axisagainstvariousbatterysizesonthex-axis.Theyshowcasehoweachfactorcontributestosupply-demandrelationshipsforcriticalmaterials.TheaveragesizeofEVbatteries,estimatedtoplateauatabout57kilowatthours(kWh),iscrucialasitdirectlycorrelateswiththedemandforbatterymaterials(BNEF,2024a;Krishna,2023).ThesensitivityanalysisdepictedinFigure2considersarangeofestimatedsupplyandusecolourcoding:theyellowareaindicatespotentialmarketshortfalls,whilethegreenareahighlightspotentialsurpluses.Orangedotsrepresentthemarketbalanceunderconditionsoflowsupply,whilegreendotsdenotethebalanceunderhigh-supplyscenarios.
LITHIUM
NICKEL
COBALT
COPPER
MANGANESE
GRAPHITE
PHOSPHOROUS
11
exeCutiVesummary
FIGURE2Sensitivityanalysisofsupply-demandbalancebasedonaveragebatterysizeand
batterychemistry
TechnologyStagnationscenarioCurrentTrendsscenarioIncreasedInnovationscenario
1.501.000.500.00-0.50-1.00-1.50
Lithium(LCE)
0.250.200.150.100.050.00-0.05-0.10-0.15-0.20-0.25
Mt
3.00
1.50
0.00
-1.50
-3.00
Cobalt
Graphite
2.001.501.000.500.00-0.50-1.00-1.50-2.00
Nickel
505560657050556065705055606570
kWh
oDeficitoSurplusoLowsupplyoHighsupply
Notes:kWh=kilowatthour;LCE=lithiumcarbonateequivalent;Mt=milliontonnes.
CRITICALMATERIALS:BATTERIESFORELECTRICVEHICLES
12
Basedontheanalysisoffactorsaffectingbothsupplyanddemandby2030,thefollowingperspectivesarepresentedforeachmaterial:
•Thedemandforlithiumremainslargelyunaffectedbythechoiceofbatterychemistry,sincemostEVbatterytechnologiesdependonit.Sodium-ionbatteries,whichdonotrelyonlithium,mayentertheEVbatterymarketlaterinthedecade,buttheirimpactonreducinglithiumdemandwilllikelybemoresignificantafter2030.Long-termavailabilityoflithiumisnotaconstraint.Instead,addressingpotentiallithiumdeficitswillsignificantlyrelyonexpandingthesupplychainorreducingdemandthroughimprovementoftheenergydensity2ofexistinglithium-ionbatteries.
•CobaltcanbesubstitutedwiththeintegrationoftechnologiessuchasLFPandLMFP,rapidlyreducingcobalt’scriticalityforroadtransportelectrification.However,cobaltsupplyshortfallscouldbepossibleinscenarioswherecobalt-containingbatteries,suchasnickelmanganese
cobaltoxide(NMC)andnickelcobaltaluminiumoxide(NMCA),remainwidespread.
•Basedoncurrentsupplyprojections,naturalgraphitewilllikelybeinsufficienttomeetallexpectedgraphitedemandby2030.Syntheticgraphite,althoughmoreenergyintensive,couldbescaleduptobridgethesupplygap.Beyondthat,atransitiontowardsanodeswithincreasedsiliconcontentisalreadyoccurringandcouldfurtherreducepressureonthematerial.
•NickeldemandhasalreadybeencontainedbytheriseofLFPandLMFPbatteries.Afurthertransitionfromnickel-richbatteriestootherchemistrieswouldmakesupplyshortagesunlikely,unlessthesupplymaterialisesatthelowerendofthecurrentsupplyprojectionsrange.
•Thedemandforcopper,phosphorousandmanganesefromtheEVmarketisexpectedtorepresentonlyasmallshareofglobaldemandforthesematerials.Therefore,itsimpactonshapingsupplyanddemanddynamicswillberelativelyminorcomparedwithdemandfromlargersectors.However,addressingissuessurroundingbattery-gradepurifiedphosphoricacidandhigh-puritymanganesesulphateemergesasthemostpressingconcern,requiringconcertedactionstorapidlyexpandtheirsupplychains.
Innovationhasalreadydecreasedthedemandforcriticalmaterialssignificantly.Forinstance,LFPbatteries,whichhadasingle-digitmarketsharein2015,capturedanestimated44%ofthepassengervehiclemarketin2023.Projecting2023’scobaltandnickeldemandfiveyearsprior–consideringthemixofbatterychemistriesatthetime–wouldhaveledtosignificantoverestimationsofdemand.Forinstance,cobaltandnickeldemandfromEVbatterieswouldhavebeenabout50%higher.
2Inthisreport,energydensityreferstogravimetricenergydensity.
13
exeCutiVesummary
AdvancesinEVbatterytechnologyhavealsoimprovedgravimetricenergydensitysignificantly,a30%increase,onaverage,forbatterycellsand60%forbatterypacksoverthepastdecade(BNEF,2024).Theseadvancesnotonlyboostenergyperformanceanddrivedowncosts,theyalsoplayasignificantroleinreducingmaterialdemand.Furtherimprovementsarestillpossible.Forinstance,ContemporaryAmperexTechnologyCo.,Limited(CATL)andNorthvolthavedevelopedasodium-ionbatterywithanenergydensityof160watthourperkilogramme(Wh/kg);theyareplanningforthenextgenerationtoexceed200Wh/kg(CATL,2023;Northvolt,2023).Moreover,CATLhasunveiledacondensedbatterycell,which,throughchemicalanddesigninnovation,isabletoachieveagravimetricenergydensityof500Wh/kg(CATL,2023).Thismarkedlysurpassesthetypicalenergydensityof250-300Wh/kginnickel-richbatteries(Ringbeck,2024).Designpresentsanotheravenueforinnovation.Forexample,BYDhascommercialisedthecell-to-packtechnologyandisnowadvancingtocell-to-bodytechnology.Thislatestapproachfurtherincreasesenergydensitybyintegratingbatterycellsdirectlyintoacar’sbody,therebycompletelyeliminatingtheneedforatraditionalbatterypack(BYD,2023;WEF,2023).
Innovationemergesasthecentralcomponentinaddressingpotentialbottlenecks,offeringpathwaystoreducedemandandbolstersupply.Amonginnovations,advancementsinEVbatterycathodes,notablyLFPandLMFP,alongsideemergingtechnologies,suchassodium-ion,couldalleviate,ifnotentirelyeliminate,thedemandforsomematerials.ContinuousimprovementinenergydensitythroughinnovativedesignandengineeringcouldpositionLFPandLMFPaschallengerstonickel-richbatteries’dominanceinhigh-endEVmarketsegments.Overcomingsodium-iontechnology’schallengescouldleadtostructuraladvancements,bypartiallyorcompletelyeliminatingtheneedforsomematerials,forexample,lithium,cobaltandgraphite.Moreover,innovationinminingandprocessingcouldalleviatepressuresonthesupplyside,enablingtimely,cost-effectiveandsustainableproductionofmaterials.
ThisreportdetailsseveralactionsforgovernmentsandstakeholdersacrosstheEVbatterysupplychaintoensureanadequate,reliable,sustainableandaffordablesupplyofcriticalmaterialsforEVbatteriesby2030.
Toaddresspotentialmaterialbottlenecks,governmentscanplayakeyroleinacceleratingandsupportinginnovationaimedatreducingoreliminatingtheuseofcriticalmaterialsinEVbatteries.Examplesofpossibleinnovationsincludeadvancementsincathodeandanodetechnologies,andimprovementsinbatterydesignandengineeringtoboostenergydensityandreducematerialuse.GiventherapidevolutionofEVbatterytechnologies,governments,miningandprocessingcompanies,andbatterymanufacturerscanmonitormarketscloselyandfrequentlyandincreaseindustryengagementtostayabreastofthelatesttrendsandbreakthroughsininnovation.GovernmentsmayalsofacilitateareductionofcriticalmaterialdemandbysupportingtheaccelerateddeploymentofEVcharginginfrastructure,supportingtheadoptionofEVswithsma
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44974-2024技术性贸易措施术语
- 《收入分配差距》课件
- 慢性创伤性滑膜炎的健康宣教
- 急性蜂窝织炎的临床护理
- 化脓性甲沟炎的临床护理
- 文稿校对的五法
- 日光角化病的临床护理
- 黑棘皮症的临床护理
- 黏多糖贮积症Ⅲ型的临床护理
- JJF(陕) 100-2022 曲挠试验机校准规范
- 24春国家开放大学《计算机网络》形考任务1-4参考答案
- 营销管理智慧树知到期末考试答案2024年
- 【课件】丹纳赫DBS-问题解决培训
- 现代食品加工技术(食品加工新技术)智慧树知到期末考试答案2024年
- 2023全国职业院校技能大赛(网络建设与运维赛项)备考试题库
- 2024年度-Pitstop教程去水印
- 声明书:个人婚姻状况声明
- 幼儿园年检整改专项方案
- 新管径流速流量对照表
- 20以内退位减法口算练习题100题30套(共3000题)
- 咯血病人做介入手术后的护理
评论
0/150
提交评论